www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Quadratischer Rest mod p
Quadratischer Rest mod p < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratischer Rest mod p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 So 19.05.2019
Autor: questionpeter

Aufgabe
Sei p eine Primzahl mit p>5. Zeige, dass die Gleichung [mm] x^2\equiv [/mm] 5(mod p)genau eine Lösung [mm] x\in \IZ [/mm] besitzt, wenn [mm] p\equiv \pm [/mm] 1(mod 5) ist.


Hallo,

Ist [mm] x\in \IZ [/mm] eine Lösung von [mm] x^2\equiv [/mm] 5 (mod p), dann ist es äquivalent dazu dass [mm] \bigg(\bruch{5}{p}\bigg)=1, [/mm] d.h. 5 ist quadratische Rest modulo p [mm] \gdw \bigg(\bruch{p}{5}\bigg)=1 \gdw p\equiv \pm [/mm] 1 (mod 5).

Ist das richtig?

        
Bezug
Quadratischer Rest mod p: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 So 19.05.2019
Autor: Gonozal_IX

Hiho,

erstmal: Die Formulierung deiner Frage ist falsch.

> Zeige, dass die Gleichung $ [mm] x^2\equiv [/mm] $ 5(mod p)genau eine Lösung $ [mm] x\in \IZ [/mm] $ besitzt, wenn $ [mm] p\equiv \pm [/mm] $ 1(mod 5) ist.

Bspw hat die Lösung für p=11=1 mod 5 zwei Lösungen.

Die Aufgabe soll wohl lauten:

> Zeige, dass die Gleichung $ [mm] x^2\equiv [/mm] $ 5(mod p) genau dann eine Lösung $ [mm] x\in \IZ [/mm] $ besitzt, wenn $ [mm] p\equiv \pm [/mm] $ 1(mod 5) ist.


> Ist [mm]x\in \IZ[/mm] eine Lösung von [mm]x^2\equiv[/mm] 5 (mod p), dann ist
> es äquivalent dazu dass [mm]\bigg(\bruch{5}{p}\bigg)=1,[/mm]

Warum sollte das gelten?

Gruß,
Gono

Bezug
                
Bezug
Quadratischer Rest mod p: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:09 Mo 20.05.2019
Autor: questionpeter

Das habe aus einem  Skript entnommen, denn da heißt es wenn es eine Lösung für [mm] x^2\equiv [/mm] a (mod p)  gibt dann heißt es das a ein quadratischer Rest modulo p ist, also [mm] \bigg(\bruch{a}{p}\bigg)=1.(legendre [/mm] Symbol)



Bezug
                        
Bezug
Quadratischer Rest mod p: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 22.05.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Quadratischer Rest mod p: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:34 Di 21.05.2019
Autor: questionpeter

Kann mir da niemand helfen bzw einen Tipp geben?

Bezug
                
Bezug
Quadratischer Rest mod p: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:47 Mi 22.05.2019
Autor: hippias

Das sieht gut aus. Begründe Deine Rechnung vielleicht genauer.

Bezug
                
Bezug
Quadratischer Rest mod p: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Do 23.05.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de