www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Orthonormales Tupel
Orthonormales Tupel < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormales Tupel: Tipp/ Kontrolle
Status: (Frage) beantwortet Status 
Datum: 17:52 Di 09.05.2017
Autor: Franzi17

Aufgabe:

Sei (u1,...,un) ein orthonormales Tupel mit u1,...,un ∈Rm. Zeigen Sie, dass die folgenden Aussagen äquivalent sind.
a) Das Tupel [mm] (u_1,...,u_n) [/mm] ist eine Basis von [mm] R_m [/mm] (also insbesondere n = m).
b.) Für alle u ∈ [mm] R_m [/mm] gilt [mm] \left|| u \right||^2 [/mm] = [mm] \summe_{i=1}^{N} \left| \right|^2 [/mm]


Hallo,

bei a.)
Fehlt mir die Beweisidee.
Ich weiss, dass Ein Orthonormalsystem immer linear unabhängig ist und
dass man mit Gram Schmidt jedes Orthonormalssystem zu einer ONB ergänzen kann. Aber ich komm nicht auf einen Ansatz.

b.) habe ich gelöst. Stimmt das so?

Fourier-Entwicklung:
u = [mm] \summe_{i=1}^{N} *u_i [/mm]

[mm] (u_1, [/mm] ..., [mm] u_n) [/mm] ist ONB von V
-> Es existiert [mm] \Lambda_1,...,\Lambda_n \in \IR [/mm] mit
u = [mm] \summe_{s=1}^{N} \Lambda_s*u_s [/mm]

[mm] [/mm] = [mm] <\summe_{s=1}^{N} \Lambda_s*u_s, u_i> [/mm] = [mm] \summe_{s=1}^{N} \Lambda_s* [/mm] = [mm] \Lambda_i [/mm]

da:
[mm] [/mm] = 0 für s ungleich i
und = 1 für s =i

->
u = [mm] \summe_{i=1}^{N} \Lambda_i*u_i [/mm]

z.Z.:
[mm] \left|| u \right||^2 [/mm] = [mm] \summe_{i=1}^{N} \left| \right|^2 [/mm]

[mm] \left|| u \right||^2 [/mm]  = <u,u> = [mm] <\summe_{i=1}^{N} \Lambda_i*u_i, \summe_{i=1}^{N} \Lambda_i*u_i> [/mm] = [mm] \summe_{i=1}^{N} <\Lambda_i*u_i, \Lambda_i*u_i> [/mm] = [mm] \summe_{i=1}^{N} \left|| \Lambda_i*u_i \right||^2 [/mm] = [mm] \summe_{i=1}^{N} \left| \Lambda_i \right|^2*\left|| u_i \right||^2 [/mm] = [mm] \summe_{i=1}^{N} \left| \Lambda_i \right|^2* [/mm] = [mm] \summe_{i=1}^{N} \left| \Lambda_i \right|^2*1 [/mm] = [mm] \summe_{i=1}^{N} \left| \right|^2* [/mm]

Danke für die Hilfe!!


        
Bezug
Orthonormales Tupel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Di 09.05.2017
Autor: fred97

jetzt sind hellseher gefragt. ich bin keiner. wie lauten denn die Aufgabenstellungen?

Bezug
                
Bezug
Orthonormales Tupel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Di 09.05.2017
Autor: Franzi17

Tut mir leid :)
ich habe die Aufgabenstellung eingefügt!

Bezug
                        
Bezug
Orthonormales Tupel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:05 Mi 10.05.2017
Autor: leduart

Hallo
ich seh keine Aufgabe, weder a) vollständig noch irgendwas von b
Gruß leduart

Bezug
                                
Bezug
Orthonormales Tupel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Mi 10.05.2017
Autor: Franzi17

Tut mir leid, mir hatte es einen Teil wiedet gelöscht, jetzt passt es!

Bezug
        
Bezug
Orthonormales Tupel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Fr 12.05.2017
Autor: tobit09

Hallo Franzi17!


>  Aufgabe:
>  
> Sei (u1,...,un) ein orthonormales Tupel mit u1,...,un
> ∈Rm. Zeigen Sie, dass die folgenden Aussagen äquivalent
> sind.
> a) Das Tupel [mm](u_1,...,u_n)[/mm] ist eine Basis von [mm]R_m[/mm] (also
> insbesondere n = m).
>  b.) Für alle u ∈ [mm]R_m[/mm] gilt [mm]\left|| u \right||^2[/mm] =
> [mm]\summe_{i=1}^{N} \left| \right|^2[/mm]

(Mit N ist hier n gemeint, oder?)



> b.) habe ich gelöst. Stimmt das so?

Du meinst, dass du die Richtung von a) nach b) gelöst hast.
  

> Fourier-Entwicklung:
>  u = [mm]\summe_{i=1}^{N} *u_i[/mm]

(Das benötigst du im Folgenden gar nicht.)


> [mm](u_1,[/mm] ..., [mm]u_n)[/mm] ist ONB von V
>  -> Es existiert [mm]\Lambda_1,...,\Lambda_n \in \IR[/mm] mit

>  u = [mm]\summe_{s=1}^{N} \Lambda_s*u_s[/mm]

[ok]


> [mm][/mm] = [mm]<\summe_{s=1}^{N} \Lambda_s*u_s, u_i>[/mm] =
> [mm]\summe_{s=1}^{N} \Lambda_s*[/mm] = [mm]\Lambda_i[/mm]
>  
> da:
> [mm][/mm] = 0 für s ungleich i
> und = 1 für s =i

[ok]


> ->
> u = [mm]\summe_{i=1}^{N} \Lambda_i*u_i[/mm]
>  
> z.Z.:
> [mm]\left|| u \right||^2[/mm] = [mm]\summe_{i=1}^{N} \left| \right|^2[/mm]
>  
> [mm]\left|| u \right||^2[/mm]  = <u,u> = [mm]<\summe_{i=1}^{N} \Lambda_i*u_i, \summe_{i=1}^{N} \Lambda_i*u_i>[/mm]
> = [mm]\summe_{i=1}^{N} <\Lambda_i*u_i, \Lambda_i*u_i>[/mm] =
> [mm]\summe_{i=1}^{N} \left|| \Lambda_i*u_i \right||^2[/mm] =
> [mm]\summe_{i=1}^{N} \left| \Lambda_i \right|^2*\left|| u_i \right||^2[/mm]
> = [mm]\summe_{i=1}^{N} \left| \Lambda_i \right|^2*[/mm] =
> [mm]\summe_{i=1}^{N} \left| \Lambda_i \right|^2*1[/mm] =
> [mm]\summe_{i=1}^{N} \left| \right|^2*[/mm]

[ok]


Schön, die Richtung von a) nach b) hast du vollständig gelöst! :-)


> bei a.)
>  Fehlt mir die Beweisidee.

Du meinst: Bei der Richtung von b) nach a).


> Ich weiss, dass Ein Orthonormalsystem immer linear
> unabhängig ist und
> dass man mit Gram Schmidt jedes Orthonormalssystem zu einer
> ONB ergänzen kann. Aber ich komm nicht auf einen Ansatz.

Das ist ein guter Ansatz!

Erweitern wir also [mm] $(u_1,\ldots,u_n)$ [/mm] zu einer Orthonormalbasis [mm] $(u_1,\ldots,u_n,u_{n+1},\ldots,u_m)$ [/mm] des [mm] $\IR^m$. [/mm]

Es genügt nun, $n=m$ zu zeigen (denn dann ist [mm] $(u_1,\ldots,u_n)=(u_1,\ldots,u_m)$ [/mm] eine Basis des [mm] $\IR^m$). [/mm]

Angenommen es gilt doch $m>n$.
Zu zeigen ist ein Widerspruch.

Berechne unter der Annahme $m>n$ die Norm [mm] $||u_m||$ [/mm] einmal direkt und einmal unter Verwendung von b).


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de