www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Orthogonale Gruppe
Orthogonale Gruppe < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Gruppe: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:41 Mo 08.05.2017
Autor: Franzi17

Aufgabe
Sei A ∈ Om(R) und [mm] A^s [/mm] = A + A^(−1)
a) Zeigen Sie, dass [mm] A^s [/mm] symmetrisch ist.
b) Sei λ ∈ R ein Eigenwert von [mm] A^s [/mm] und [mm] A^s*v [/mm] = λv mit v [mm] \in \IR^m [/mm] \ {0}.
Wir setzen U = Spann(v,Av). Zeigen Sie, dass dimU ∈{1,2}.
c) Sei U wie in b). Zeigen Sie, dass Au ∈ U für alle u ∈ U.
d) Sei U wie in c) und U⊥ = {w ∈ Rm :<u,w> = 0 für alle u ∈ U}, U⊥ ein
Untervektorraum von [mm] R^m. [/mm] Zeigen Sie, dass Au ∈ U⊥ für alle u ∈ U⊥.
(Hinweis: u ∈ U ⇒ A(−1)u ∈ U.)

Hallo,

a.)
[mm] A^s [/mm] = A + A^(-1)
Da A, A^(-1)  /in [mm] O_m [/mm] gilt:
A ^T × A = [mm] E_m [/mm]
Und [mm] (A^{-1})^T [/mm] × A^(-1) = [mm] E_m [/mm]
Ausserdem A×A(-1) = [mm] E_m [/mm]
Also:
[mm] (A^{-1})^T [/mm] = A
[mm] A^T=A^{-1} [/mm]

z.z.: [mm] A^s [/mm] symmetrisch, also
Z.z.:  [mm] A^s [/mm] = [mm] (A^s)^T [/mm]
[mm] (A^s)^T= (A+A^{-1})^T [/mm] = [mm] A^T [/mm] + (A^(-1))T = A^(-1) + A = A + A^(-1) [mm] =A^s [/mm]

b.)
Hier komme ich leider nicht weiter.
U = span(v,Av) = xv + yAv
X,y [mm] \in \IR [/mm]
Und aus [mm] A^s×v [/mm] = [mm] \lambda×v [/mm]
Folgt:
Av + A^(-1)v = [mm] \lambda×v [/mm]

Ich verstehe den Zusammenhang nicht. Ich wäre sehr froh um einen Tipp,
weil ich sonst die restlichen Aufgaben auch nicht bearbeiten kann. Vielen Dank!


        
Bezug
Orthogonale Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 08.05.2017
Autor: fred97

Zu b): Da [mm] $v\ne [/mm] 0$ folgt: [mm] $\dim [/mm] U [mm] \ge [/mm] 1$. Da $U$ die lineare Hülle von 2 Vektoren ist, haben wir  [mm] $\dim [/mm] U [mm] \le [/mm] 2$.

Bezug
                
Bezug
Orthogonale Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mo 08.05.2017
Autor: Franzi17

Vielen Dank!!
stimmt die a.) so wie ich sie gelöst habe?

bei c.)
u [mm] \in [/mm] U
->
entweder: u = v
oder u = Av


z.Z. Au [mm] \in [/mm] U
1. Fall:
u = Av
Au= Av
und Av ist [mm] \in [/mm] U

2.Fall:
Au = A(Av)

aber das lässt sich nicht so umformen dass es in U ist?
Danke!


Bezug
                        
Bezug
Orthogonale Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Fr 12.05.2017
Autor: hippias


> Vielen Dank!!
>  stimmt die a.) so wie ich sie gelöst habe?

Ja.

>
> bei c.)
>  u [mm]\in[/mm] U
>  ->

> entweder: u = v
>  oder u = Av

Das ist nicht richtig. $U$ enthält beliebige Linearkombinationen von $v$ und $Av$. Wie so oft reicht es aber aus, die Behauptung für die Erzeuger zu zeigen - falls es Dir nicht bewusst war, beweise es.

>  
>
> z.Z. Au [mm]\in[/mm] U
>  1. Fall:
>  u = Av
>  Au= Av
>  und Av ist [mm]\in[/mm] U
>
> 2.Fall:
> Au = A(Av)
>  
> aber das lässt sich nicht so umformen dass es in U ist?

Wende die Vorausstzung an.

>  Danke!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de