www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Logarithmus: glm. Konvergenz
Logarithmus: glm. Konvergenz < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus: glm. Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Mo 08.12.2014
Autor: Fenistil

Aufgabe
Hallo zusammen,

sei [mm]S_n(z,z)=\sum_{j=0}^n|z|^{2j}[/mm].
Dann folgt ja aus der endlichen geometrischen Reihe für [mm]|z| \leq 1[/mm], dass [mm]S_n(z,z)=\frac{1-|z|^{2n+2}}{1-|z|^2}[/mm].
Zeige, dass [mm]\frac{1}{2n}\log S_n(z,z)\rightarrow \log^+|z|[/mm] lokal gleichmäßig auf [mm]\mathbb{C}[/mm].

So direkt sehe ich das nicht. Ich hätte jetzt die Idee, dass dies durch umformen oder mit der Reihenentwicklung des Logarithmus folgt.
Bei Wikipedia habe ich folgende Reihenentwicklung gefunden:
[mm]\log(1-z)=-\sum_{k=1}^\infty \frac{z^k}{k} \qquad |z|\le 1 \, , \, z\neq 1[/mm].
Wenn man für z nun [mm]|z|^{2n+2}[/mm] bzw [mm]|z|^2[/mm] einsetzt und den Bruch mit den Logarithmusgesetzen als Differenz schreibt, ergibt sich bei mir:
[mm]-\sum_{k=1}^\infty\frac{|z|^{(2n+2)k}}{k}+\sum_{k=1}^\infty\frac{|z|^{2k}}{k}[/mm].
Dies ist nun eine Art Teleskopsumme, wo sich Teile wegkürzen. Da n aber nicht gegeben ist, weiß ich nicht, wie ich nun allgemein begründen kann, dass dies gegen [mm]\log^+|z|[/mm] konvergiert.
Hat jemand eine Idee??

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt, da es sehr wichtig ist:
http://www.matheboard.de/thread.php?postid=1956413#post1956413
http://www.matheplanet.com/

        
Bezug
Logarithmus: glm. Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Mo 08.12.2014
Autor: fred97


> Hallo zusammen,
>  
> sei [mm]S_n(z,z)=\sum_{j=0}^n|z|^{2j}[/mm].
>  Dann folgt ja aus der endlichen geometrischen Reihe für
> [mm]|z| \leq 1[/mm], dass [mm]S_n(z,z)=\frac{1-|z|^{2n+2}}{1-|z|^2}[/mm].

Achtung ! Das gilt nur für |z| [mm] \ne [/mm] 1 !

Für |z|=1 ist [mm] S_n(z,z)=n+1. [/mm]

FRED


>  Zeige, dass [mm]\frac{1}{2n}\log S_n(z,z)\rightarrow \log^+|z|[/mm]
> lokal gleichmäßig auf [mm]\mathbb{C}[/mm].
>  So direkt sehe ich das nicht. Ich hätte jetzt die Idee,
> dass dies durch umformen oder mit der Reihenentwicklung des
> Logarithmus folgt.
>  Bei Wikipedia habe ich folgende Reihenentwicklung
> gefunden:
>  [mm]\log(1-z)=-\sum_{k=1}^\infty \frac{z^k}{k} \qquad |z|\le 1 \, , \, z\neq 1[/mm].
>  
> Wenn man für z nun [mm]|z|^{2n+2}[/mm] bzw [mm]|z|^2[/mm] einsetzt und den
> Bruch mit den Logarithmusgesetzen als Differenz schreibt,
> ergibt sich bei mir:
>  
> [mm]-\sum_{k=1}^\infty\frac{|z|^{(2n+2)k}}{k}+\sum_{k=1}^\infty\frac{|z|^{2k}}{k}[/mm].
>  Dies ist nun eine Art Teleskopsumme, wo sich Teile
> wegkürzen. Da n aber nicht gegeben ist, weiß ich nicht,
> wie ich nun allgemein begründen kann, dass dies gegen
> [mm]\log^+|z|[/mm] konvergiert.
>  Hat jemand eine Idee??
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt, da es sehr wichtig ist:
>  
> http://www.matheboard.de/thread.php?postid=1956413#post1956413
>  http://www.matheplanet.com/


Bezug
                
Bezug
Logarithmus: glm. Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:09 Mo 08.12.2014
Autor: Fenistil

Ja, das habe ich dann explizit behandelt, dann ist der Limes von [mm]\frac{1}{2n}\log(n+1)=0[/mm].
Jetzt brauche ich noch, dass sich für [mm]|z|<1[/mm] Null und sonst [mm]log|z|[/mm] ergibt..

Bezug
                        
Bezug
Logarithmus: glm. Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 10.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de