Lineare Abhängigkeit < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | 1) Sei (V,+,*) ein Vektorraum. u , v und w seien beliebige Vekoren in V.
Zeigen sie: Die Vektoren u-v, v-w und w-u sind linear abhängig.
2)gegeben sind die Vektoren v1=(3,4,5) v2=(-3,4,5) v3=(3,4,-5) und u=(1,1,1).
stellen sie u als linearkombination der Vektoren v1,v2,v3 dar. |
hallo,
bei der ersten frage weis ich nicht wie ich das zeigen soll.
zu der 2 habe ich ein lineares gleichungssystem aufgestellt und für x=4/15 , y= -1/24 und c= 1/40 rausbekommen.
das müsste eig stimmen, nur weis ich leider net so ganz genau wie ich mein u Vektor als k´Lösung aufschreiben soll.
Mfg
|
|
|
|
> 1) Sei (V,+,*) ein Vektorraum.
über dem Körper [mm] \IR?
[/mm]
> u , v und w seien beliebige
> Vekoren in V.
> Zeigen sie: Die Vektoren u-v, v-w und w-u sind linear
> abhängig.
>
> 2)gegeben sind die Vektoren v1=(3,4,5) v2=(-3,4,5)
> v3=(3,4,-5) und u=(1,1,1).
> stellen sie u als linearkombination der Vektoren v1,v2,v3
> dar.
> hallo,
> bei der ersten frage weis ich nicht wie ich das zeigen
> soll.
Hallo,
Du weißt sicher, daß Vektoren linear unabhängig sind, wenn nur die triviale Linearkombination (also nur wenn überall die 0 als Faktor davorsteht) der Vektoren den Nullvektor ergibt.
Linear abhängig sind sie, wenn es eine nichttriviale Linearkombination gibt, bei der der Nullvektor herauskommt.
Such Zahlen [mm] \lambda_1, \lambda_2, \lambda_3 [/mm] die nicht alle =0 sind, so daß
[mm] \lambda_1(u-v)+ \lambda_2(v-w)+\lambda_3(w-u)=Nullvektor.
[/mm]
>
> zu der 2 habe ich ein lineares gleichungssystem aufgestellt
> und für x=4/15 , y= -1/24 und c= 1/40 rausbekommen.
> das müsste eig stimmen, nur weis ich leider net so ganz
> genau wie ich mein u Vektor als k´Lösung
??? Was meinst Du mit "k'Lösung"?
> aufschreiben
> soll.
Linearkombination:
u= [mm] x=4/15*v_1-1/24 v_2+1/40v_3
[/mm]
(Hab aber nicht nachgerechnet)
LG Angela
>
> Mfg
>
|
|
|
|
|
wenn ich z.b die Vektoren u=x1(1,1,1) v=x2(1,2,3) und w=x3(1,3,5) wähle, bekomme ich u-v(0,-1,-2) v-w(0,-1,-2) und w-u(0,2,4) raus.
wie muss ich denn da weiter machen?? ein lgs aufstellen und versuchen dann x1,x2und x3 rauszukriegen , wenn ja bekomme ich vom Taschenrechner angezeigt unendlich viele Lösungen.
|
|
|
|
|
> wenn ich z.b die Vektoren u=x1(1,1,1) v=x2(1,2,3) und
> w=x3(1,3,5) wähle,
Neiiiiin!
Du sollst keine konkreten Vektoren wählen, sondern zeigen:
egal wie man u,v,w wählt, es sind immer u-v, v-w, w-u linear abhängig.
Kann man als Linearfaktoren [mm] \lambda_1=1, \lambda_2=2 [/mm] und [mm] \lambda_3=3 [/mm] wählen?
Schauen wir nach:
1*(u-v)+2*(v-w)+3*(w-u)=(1-3)u+(-1+2)v+(-2+3)w=-2u-v+w,
und das wird bei völlig beliebiger Wahl von u,v,w nicht den Nullvektor ergeben.
Die von mir getestete nichttriviale Linearkombination taugt also nicht dazu, die lineare Unabhängigkeit von u-v, v-w, w-u zu zeigen.
Du mußt eine "bessere" suchen, eine bei der sicher 0 herauskommt.
LG Angela
bekomme ich u-v(0,-1,-2) v-w(0,-1,-2)
> und w-u(0,2,4) raus.
> wie muss ich denn da weiter machen?? ein lgs aufstellen
> und versuchen dann x1,x2und x3 rauszukriegen , wenn ja
> bekomme ich vom Taschenrechner angezeigt unendlich viele
> Lösungen.
>
|
|
|
|
|
Habe das gerade mal ausprobiert und ich würde für [mm] \lambda1= [/mm] 1, [mm] \lambda2=1 [/mm] und [mm] \lambda3=1 [/mm] =0 rauskriegen.
Wenn ja wie sollte ich die lösung angeben?
Mfg
|
|
|
|
|
> Habe das gerade mal ausprobiert und ich würde für
> [mm]\lambda1=[/mm] 1, [mm]\lambda2=1[/mm] und [mm]\lambda3=1[/mm] =0 rauskriegen.
> Wenn ja wie sollte ich die lösung angeben?
> Mfg
Du schreibst: "für [mm] u,v,w\in [/mm] V sind die Vektoren
u-v,v-w,w-u linear abhängig, denn es ist
1*(u-v)+1*(v-w)+1*(w-u)=0 "
LG Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:55 Di 30.12.2014 | Autor: | canyakan95 |
danke für die tolle Hilfe
mfg und frohes neues
|
|
|
|