www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Lineare Abbildung von Vektoren
Lineare Abbildung von Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung von Vektoren: Alte Klausuraufgabe
Status: (Frage) beantwortet Status 
Datum: 16:38 Di 17.02.2015
Autor: kreis

Aufgabe 1
Eine lineare Abbildung f [mm] \in Hom(\IR^{3};R^{3}) [/mm] hat die folgenden Eigenschaften:
1. Der Vektor [mm] v_{1} [/mm] = [mm] e_{1} +e_{2} [/mm] liegt im Kern von f.
2. Der Vektor [mm] v_{2} [/mm] = [mm] e_{1} [/mm] - [mm] e_{2} [/mm] ist ein Eigenvektor von f zum Eigenwert 4.
3. Der Vektor [mm] v_{3} [/mm] = [mm] e_{1} [/mm] - [mm] e_{2} +e_{3} [/mm] wird auf den Vektor [mm] e_{3} [/mm] abgebildet.
Bestimmen Sie die Matrix A von f bezüglich der Standardbasis.


Aufgabe 2
b) Stellen Sie fest, ob der unten genannte Vektor v im Bild der durch die Matrix B
repräsentierten linearen Abbildung liegt und finden Sie die Menge aller Vektoren, die auf v abgebildet werden. Führen Sie diese Fragestellung auf die Lösung eines linearen Gleichungssystems zurück.
[mm] v=\vektor{1 \\ -1 \\ 2} [/mm]  B= [mm] \pmat{ 1 & -1 & 2 \\ -1 & 1 & -2 \\ -2 & 2 & -2 } [/mm]


Also ich habe schon mal angefangen:
a)
Wir wissen:
Aus 1. folgt [mm] v_{1}=(1,,1,0) [/mm] wird abgebildet auf den Kern ab also [mm] w_{1}= [/mm] (0,0,0)
Aus 2. folgt [mm] v_{2}=(1,-1,0) [/mm] wird abgebildet auf [mm] w_{2} [/mm] =(-4,4,0) ab.
Und aus 3. [mm] v_{3}=(1,-1,1) [/mm] auf [mm] w_{3}= [/mm] (0,0,1)
Da die abbildung ja Linear ist gilt doch:

[mm] e_{1} [/mm] =0.5 * [mm] (v_{1}+v_{2}) \Rightarrow [/mm] 0.5* ( [mm] w_{1}+ w_{2})=(2,-2,0) [/mm]
[mm] e_{2}=0.5 [/mm] * [mm] (-v_{1}+v_{2}) \Rightarrow [/mm] 0.5* ( [mm] -w_{2}+ w_{1})=(-2,2,0) [/mm]
Jetzt fehlt mir ja noch eine Spalte um A zu bestimmen. Ich Denke mal stark das hat was mit 3. zu tun aber werde daraus nicht schlau. Kann ich den einfach als Dritte Spalte benutzen weil er ja linear unabhängig zu den anderen beiden ist?

Zu b)
Was soll ich tun einfach B=v setzen und auflösen?

Ich schwöre hoch und heillig:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Und wenn doch dann lasse ich mich von einem Pander fressen.

        
Bezug
Lineare Abbildung von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Di 17.02.2015
Autor: meili

Hallo,

> Eine lineare Abbildung f [mm]\in Hom(\IR^{3};R^{3})[/mm] hat die
> folgenden Eigenschaften:
>  1. Der Vektor [mm]v_{1}[/mm] = [mm]e_{1} +e_{2}[/mm] liegt im Kern von f.
>  2. Der Vektor [mm]v_{2}[/mm] = [mm]e_{1}[/mm] - [mm]e_{2}[/mm] ist ein Eigenvektor
> von f zum Eigenwert 4.
>  3. Der Vektor [mm]v_{3}[/mm] = [mm]e_{1}[/mm] - [mm]e_{2} +e_{3}[/mm] wird auf den
> Vektor [mm]e_{3}[/mm] abgebildet.
>  Bestimmen Sie die Matrix A von f bezüglich der
> Standardbasis.
>  
> b) Stellen Sie fest, ob der unten genannte Vektor v im Bild
> der durch die Matrix B
>  repräsentierten linearen Abbildung liegt und finden Sie
> die Menge aller Vektoren, die auf v abgebildet werden.
> Führen Sie diese Fragestellung auf die Lösung eines
> linearen Gleichungssystems zurück.
>  [mm]v=\vektor{1 \\ -1 \\ 2}[/mm]  B= [mm]\pmat{ 1 & -1 & 2 \\ -1 & 1 & -2 \\ -2 & 2 & -2 }[/mm]
>  
> Also ich habe schon mal angefangen:
>  a)
>  Wir wissen:
>  Aus 1. folgt [mm]v_{1}=(1,1,0)[/mm] wird abgebildet auf den Kern
> ab also [mm]w_{1}=[/mm] (0,0,0)

[ok]

>  Aus 2. folgt [mm]v_{2}=(1,-1,0)[/mm] wird abgebildet auf [mm]w_{2}[/mm]
> =(-4,4,0) ab.

Bei Eigenwert 4 müsste doch [mm] $w_2=(4,-4,0)$ [/mm]  sein.

>  Und aus 3. [mm]v_{3}=(1,-1,1)[/mm] auf [mm]w_{3}=[/mm] (0,0,1)

[ok]

>  Da die abbildung ja Linear ist gilt doch:
>  
> [mm]e_{1}[/mm] =0.5 * [mm](v_{1}+v_{2}) \Rightarrow[/mm] 0.5* ( [mm]w_{1}+ w_{2})=(2,-2,0)[/mm]

[ok]

>  
> [mm]e_{2}=0.5[/mm] * [mm](-v_{1}+v_{2}) \Rightarrow[/mm] 0.5* ( [mm]-w_{2}+ w_{1})=(-2,2,0)[/mm]

[mm] $e_2 [/mm] = [mm] 0.5*(v_1-v_2)$ [/mm]
[mm] $f(e_2) [/mm] = (-2,2,0)$

>  
> Jetzt fehlt mir ja noch eine Spalte um A zu bestimmen. Ich
> Denke mal stark das hat was mit 3. zu tun aber werde daraus
> nicht schlau. Kann ich den einfach als Dritte Spalte
> benutzen weil er ja linear unabhängig zu den anderen
> beiden ist?

In der 3. Spalte muss [mm] $f(e_3)$ [/mm] stehen.
Aus 3. kannst du eine Darstellung von [mm] $e_3$ [/mm] finden, [mm] $v_3-v_2$. [/mm]

>  
> Zu b)
>  Was soll ich tun einfach B=v setzen und auflösen?

Meinst du B*x = v?
Ja, dieses Gleichungssystem lösen.

>  
> Ich schwöre hoch und heillig:
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Und wenn doch dann lasse ich mich von einem Pander
> fressen.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de