www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralfunktion
Integralfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Mi 15.04.2009
Autor: gaugau

Hallo,

ich versuche mir momentan die Behauptung zu erklären, dass zwar jede Integralfunktion eine Stammfunktion ist, aber nich jede Stammfunktion eine Integralfunktion. Könnte mir dabei jemand helfen?

Vielleicht gehe ich meine Überlegungen mal Schritt für Schritt durch. Ein Beispiel:

Die Menge aller Stammfunktionen der Funktion
$ f(x) = x $
lautet
$ F(x) = [mm] \bruch{1}{2}x^2 [/mm] + C $ .
Eine Stammfunktion mit C=2 lautet also bsp.
$ F(x) = [mm] \bruch{1}{2}x^2 [/mm] + 2 $

Die Integralfunktion lautet:
$ [mm] I_{a}(x) [/mm] = [mm] \integral_{a}^{x}{f(x) dx} [/mm] $


Wäre eine Stammfunktion dann auch eine Integralfunktion, so müsste für das Beispiel gelten:
$ F(x) = [mm] I_{a}(x) [/mm] = [mm] \integral_{a}^{x}{f(x) dx} [/mm] = F(x) - F(a) = ( [mm] \bruch{1}{2}x^2 [/mm] + 2 ) - ( [mm] \bruch{1}{2}a^2 [/mm] + 2 ) $ = [mm] \bruch{1}{2}x^2 [/mm] - [mm] \bruch{1}{2}a^2 [/mm]

Woran erkenne ich nun, dass eine Stammfunktion keine Integralfunktion ist?
Danke für eure Hilfe!

        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mi 15.04.2009
Autor: fred97

Du hast es doch fast !

Für $f(x) = x$

sind die Integralfunktionen gegeben durch:

    [mm] $\integral_{a}^{x}{f(t) dt} [/mm] = [mm] \bruch{1}{2}x^2-\bruch{1}{2}a^2$ [/mm]

Dies ist eine Stammfunktion , also von der Form [mm] $\bruch{1}{2}x^2+C$, [/mm] wobei hier  $C [mm] =-\bruch{1}{2}a^2 \le [/mm] 0$

In diesem beispiel ist also die Konstante C bei einer Integralfunktion immer [mm] \le [/mm] 0.

Somit ist z. B. [mm] \bruch{1}{2}x^2+5 [/mm] eine Stammfunktion, aber keine Integralfunktion

FRED

Bezug
                
Bezug
Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mi 15.04.2009
Autor: gaugau

Okay, soweit verstanden denke ich.

Dann ließe sich doch eigentlich allgemeiner folgern, dass eine Stammfunktion keine Integralfunktion sein kann, weil diese nicht die Menge aller Stammfunktionen (was die Integralfunktion ja erfüllt) sondern nur eine Teilmenge (im Beispiel $ C [mm] =-\bruch{1}{2}a^2 \le [/mm] 0 $ ) umfasst ?

Könnte man dann nicht ebenfalls sagen, dass keine (!) Stammfunktion mit $ C [mm] \not= [/mm] 0 $ eine Integralfunktion ist? Wenn doch, nenne mir bitte mal ein Gegenbeispiel...

Bezug
                        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 15.04.2009
Autor: fred97

Nimm mal f(x) = [mm] x^2 [/mm]

Die Integralfunktionen sind gegeben durch

           [mm] \integral_{a}^{x}{t^2 dt} [/mm] = [mm] \bruch{1}{3}x^3-\bruch{1}{3}a^3 [/mm]

Ist jetzt C [mm] \in \IR, [/mm] so überlege Dir, dass es stets ein a [mm] \in \IR [/mm] gibt mit [mm] -\bruch{1}{3}a^3 [/mm] = C

In diesem Fall haben wir also:

Menge der Integralfunktionen = Menge der Stammfunktionen

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de