www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Inklusion Exklusion Beweis
Inklusion Exklusion Beweis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inklusion Exklusion Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 05.11.2019
Autor: Jellal

Hallo zusammen,


ich soll aus der Formel fuer Inklusion und Exklusion fuer den Schnitt von n Ereignissen die entsprechende Formel fuer die Vereinigung herleiten. Das scheint mir extrem ineffizient. Ich wuesste beispielsweise, wie man den Satz selbst mit Induktion beweist, nicht aber, wie man den einen aus dem anderen ableitet.

Aufgabenstellung im Anhang (die Formeln sind etwas zu lang zum Abtippen).


Man kann natuerlich hingehen und die erste Formel nach ihrem letzten Term umstellen. Aber dann muss man immer noch die ganzen Vereinigungen, die noch vorhanden sind, auch mit der ersten Formel umschreibe. Das fuehrt aber zu sehr langen Termen mit grossem Index-Wirrwarr.

Uebersehe ich etwas, bzw. ist diese Deduktion irgendwie trivial?


vG.

Jellal


[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Inklusion Exklusion Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Di 05.11.2019
Autor: HJKweseleit


> Hallo zusammen,
>  
>
> ich soll aus der Formel fuer Inklusion und Exklusion fuer
> den Schnitt von n Ereignissen die entsprechende Formel fuer
> die Vereinigung herleiten. Das scheint mir extrem
> ineffizient. Ich wuesste beispielsweise, wie man den Satz
> selbst mit Induktion beweist, nicht aber, wie man den einen
> aus dem anderen ableitet.
>  
> Aufgabenstellung im Anhang (die Formeln sind etwas zu lang
> zum Abtippen).
>  
>
> Man kann natuerlich hingehen und die erste Formel nach
> ihrem letzten Term umstellen. Aber dann muss man immer noch
> die ganzen Vereinigungen, die noch vorhanden sind, auch mit
> der ersten Formel umschreibe. Das fuehrt aber zu sehr
> langen Termen mit grossem Index-Wirrwarr.
>  
> Uebersehe ich etwas, bzw. ist diese Deduktion irgendwie
> trivial?
>  
>
> vG.
>  
> Jellal
>  
>
> [Dateianhang nicht öffentlich]


Ich sehe das so:

Die erste Formel lässt sich auch umformen zu
[mm] P(E_1 \cup E_2) [/mm] = [mm] P(E_1) [/mm] + [mm] P(E_2) -P(E_1 \cap E_2) [/mm]

Sie sieht damit genau so aus wie die Ausgangsformel, nur dass die Zeichen [mm] \cup [/mm] und [mm] \cap [/mm] vertauscht sind.

Da beim Induktionsbeweis für den Durchschnitt nur immer wieder von dieser Ausgangsformel gebrauch gemacht wurde, ohne die Unterschiede von [mm] \cup [/mm] und [mm] \cap [/mm] zu benutzen, muss der Induktionsbeweis für die Vereinigung formal zum selben Ergebnis führen, nur dass dabei überall [mm] \cup [/mm] und [mm] \cap [/mm] vertauscht sind.


Bezug
                
Bezug
Inklusion Exklusion Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 Mi 06.11.2019
Autor: Jellal

Hallo HJKweseleit,

danke dir!!!


Ich hab glatt zwei Stunden Formeln ineinander eingesetzt und Summen und Indizes hin- und her geschoben... totale Katastrophe.
Da sieht man, wie wichtig es ist, den Wald vor lauter Baeumen nicht zu uebersehen!


vG.

Jellal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de