www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Geschlossener Ausdruck
Geschlossener Ausdruck < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschlossener Ausdruck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Do 28.08.2008
Autor: bigalow

Aufgabe
Gegeben sind die Funktionen [mm] f:(-\rho,\rho) \to \IR: x\mapsto \summe_{k=1}^{\infty}\frac{2^kx^k}{k} [/mm] .
[mm] g:(-\rho,\rho) \to \IR: x\mapsto \summe_{k=0}^{\infty}\frac{(-1)^k(2x)^{2k+1}}{2k+1} [/mm]

Geben Sie einen geschlossenen Ausdruck für die Ableitung f' bzw. g' an.

Funktion f:

Zunächst ist [mm] \summe_{k=1}^{\infty}\frac{2^kx^k}{k}=\summe_{k=1}^{\infty}\frac{2x^k}{k} [/mm]
Abgeleitet: [mm] \summe_{k=1}^{\infty}\frac{2k*2x^{k-1}}{k}=\summe_{m=0}^{\infty}2*2x^m [/mm]

Dafür finde ich aber keinen geschlossenen Ausdruck, genauso für g'. Habe ich falsch abgeleitet?

Besten Dank für eure Antworten!

        
Bezug
Geschlossener Ausdruck: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Do 28.08.2008
Autor: abakus


> Gegeben sind die Funktionen [mm]f:(-\rho,\rho) \to \IR: x\mapsto \summe_{k=1}^{\infty}\frac{2^kx^k}{k}[/mm]
> .
>  [mm]g:(-\rho,\rho) \to \IR: x\mapsto \summe_{k=0}^{\infty}\frac{(-1)^k(2x)^{2k+1}}{2k+1}[/mm]
>  
> Geben Sie einen geschlossenen Ausdruck für die Ableitung f'
> bzw. g' an.
>  Funktion f:
>  
> Zunächst ist
> [mm]\summe_{k=1}^{\infty}\frac{2^kx^k}{k}=\summe_{k=1}^{\infty}\frac{2x^k}{k}[/mm]

Diese Schreibweise ist irreführend, du müsstest 2x in Klammern schreiben.
Lass es ruhig, wie es war [mm] 2^k [/mm] ist ein konstanter Faktor, [mm] x^k [/mm] ergibt abgeleitet [mm] k*x^{k-1}. [/mm]
Die Ableitung ist dann
[mm]\summe_{k=1}^{\infty}\frac{2^k*k*x^{k-1}}{k}=\summe_{m=1}^{\infty}2*(2x)^{k-1}[/mm]

>  Abgeleitet:
> [mm]\summe_{k=1}^{\infty}\frac{2k*2x^{k-1}}{k}=\summe_{m=0}^{\infty}2*2x^m[/mm]

Abgesehen von der fehlenden Klammer um 2x  stimmt dein Endergebnis mit der Indexverschiebung.

>  
> Dafür finde ich aber keinen geschlossenen Ausdruck, genauso
> für g'. Habe ich falsch abgeleitet?
>  

Die Summe kannst du mit der Summenformel für geometrische Reihen ausdrücken (mit q=2k).

Zu g': beim Ableiten entsteht unter anderem der Teilausdruck [mm] (2x)^{2k}. [/mm] Den kannst du auch als [mm] (4x^2)^k [/mm] schreiben.

Gruß Abakus

> Besten Dank für eure Antworten!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de