www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - G ist einfach, wenn G zyklisch
G ist einfach, wenn G zyklisch < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

G ist einfach, wenn G zyklisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Fr 05.06.2020
Autor: NathanR

Hallo Matheraum - Community!


Mich verwirrt der Beweis eines Satzes und hoffe, mich kann jemand aufklären.



Satz


Eine nicht - triviale abelsche Gruppe ist genau dann einfach, wenn sie zyklisch von Primzahlordnung ist.



Beweis


Ist $G$ zyklisch von Primzahlordnung, so hat $G$ aufgrund des Satzes von Lagrange nur die trivialen Untergruppen [mm] $\{e \}$ [/mm] und $G$ und ist somit einfach.

Ist $G$ abelsch und ist die Ordnung [mm] $\vert [/mm] G [mm] \vert [/mm] $ keine Primzahl, so hat die Ordnung einen Primteiler $p$ mit $1 < p < [mm] \vert [/mm] G [mm] \vert [/mm] $.

Dann besitzt $G$ eine Untergruppe $N$ der Ordnung $p$ besitzt.

Da $G$ abelsch ist, ist $N$ ein Normalteiler, so dass $G$ nicht einfach ist.




Okay, die Rückrichtung [mm] $\Leftarrow$ [/mm] habe ich verstanden. Das ist der Absatz

"Ist $G$ zyklisch von Primzahlordnung, so hat $G$ aufgrund des Satzes von Lagrange nur die trivialen Untergruppen [mm] $\{e \}$ [/mm] und $G$ und ist somit einfach."




Aber die Hinrichtung verstehe ich noch nicht.

Man muss zeigen: Ist eine nicht - triviale abelsche Gruppe $G$  zyklisch von Primzahlordnung [mm] $\Rightarrow$ [/mm] $G$ ist einfach



Da kann man zwei Fälle unterscheiden:


1. Fall: [mm] $\vert [/mm] G [mm] \vert [/mm] $ ist eine Primzahl.


Dann ist aber $G$ schon zyklisch.


2. Fall: [mm] $\vert [/mm] G [mm] \vert [/mm] $ ist keine Primzahl.


Dann führe ich bei [mm] $\vert [/mm] G [mm] \vert$ [/mm] eine Primfaktorzerlegung durch und habe offensichtlich dann eine Primzahl $p$ mit $1 < p < [mm] \vert [/mm] G [mm] \vert$, [/mm] die [mm] $\vert [/mm] G [mm] \vert$ [/mm] teilt.


Dann existiert eine Untergruppe $N$ mit [mm] $\vert [/mm] N [mm] \vert [/mm] = p$. Da $G$ abelsch ist, ist $N$ ein nicht- trivialer Normalteiler von $G$ und $G$ ist nicht einfach.


Wo ist dann aber gezeigt, dass $G$ zyklisch ist ?


Ich komme irgendwie nicht mehr mit.



Würde mich über eine Hilfe freuen.

Schönen Tag euch noch!

        
Bezug
G ist einfach, wenn G zyklisch: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Fr 05.06.2020
Autor: fred97


> Hallo Matheraum - Community!
>  
>
> Mich verwirrt der Beweis eines Satzes und hoffe, mich kann
> jemand aufklären.
>  
>
>
> Satz
>  
>
> Eine nicht - triviale abelsche Gruppe ist genau dann
> einfach, wenn sie zyklisch von Primzahlordnung ist.
>  
>
>
> Beweis
>  
>
> Ist [mm]G[/mm] zyklisch von Primzahlordnung, so hat [mm]G[/mm] aufgrund des
> Satzes von Lagrange nur die trivialen Untergruppen [mm]\{e \}[/mm]
> und [mm]G[/mm] und ist somit einfach.
>  
> Ist [mm]G[/mm] abelsch und ist die Ordnung [mm]\vert G \vert[/mm] keine
> Primzahl, so hat die Ordnung einen Primteiler [mm]p[/mm] mit [mm]1 < p < \vert G \vert [/mm].
>  
> Dann besitzt [mm]G[/mm] eine Untergruppe [mm]N[/mm] der Ordnung [mm]p[/mm] besitzt.
>  
> Da [mm]G[/mm] abelsch ist, ist [mm]N[/mm] ein Normalteiler, so dass [mm]G[/mm] nicht
> einfach ist.
>
>
>
>
> Okay, die Rückrichtung [mm]\Leftarrow[/mm] habe ich verstanden. Das
> ist der Absatz
>  
> "Ist [mm]G[/mm] zyklisch von Primzahlordnung, so hat [mm]G[/mm] aufgrund des
> Satzes von Lagrange nur die trivialen Untergruppen [mm]\{e \}[/mm]
> und [mm]G[/mm] und ist somit einfach."
>  
>
>
>
> Aber die Hinrichtung verstehe ich noch nicht.
>  
> Man muss zeigen: Ist eine nicht - triviale abelsche Gruppe
> [mm]G[/mm]  zyklisch von Primzahlordnung [mm]\Rightarrow[/mm] [mm]G[/mm] ist einfach

Nein, das ist doch nicht die "Hinrichtung " !

Für die "Hinrichtung" ist zu zeigen:

Ist G abelsch und einfach, so ist |G| eine Primzahl. Genau das wurde oben gemacht:

  Annahme : |G| ist keine Primzahl. Aus dieser Annahme wurde gefolgert,      dass G nicht einfach ist, Widerspruch !


>  
>
>
> Da kann man zwei Fälle unterscheiden:
>  
>
> 1. Fall: [mm]\vert G \vert[/mm] ist eine Primzahl.
>  
>
> Dann ist aber [mm]G[/mm] schon zyklisch.
>  
>
> 2. Fall: [mm]\vert G \vert[/mm] ist keine Primzahl.
>  
>
> Dann führe ich bei [mm]\vert G \vert[/mm] eine Primfaktorzerlegung
> durch und habe offensichtlich dann eine Primzahl [mm]p[/mm] mit [mm]1 < p < \vert G \vert[/mm],
> die [mm]\vert G \vert[/mm] teilt.
>  
>
> Dann existiert eine Untergruppe [mm]N[/mm] mit [mm]\vert N \vert = p[/mm]. Da
> [mm]G[/mm] abelsch ist, ist [mm]N[/mm] ein nicht- trivialer Normalteiler von
> [mm]G[/mm] und [mm]G[/mm] ist nicht einfach.
>  
>
> Wo ist dann aber gezeigt, dass [mm]G[/mm] zyklisch ist ?
>  
>
> Ich komme irgendwie nicht mehr mit.
>  
>
>
> Würde mich über eine Hilfe freuen.
>  
> Schönen Tag euch noch!


Bezug
                
Bezug
G ist einfach, wenn G zyklisch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Sa 06.06.2020
Autor: NathanR

Oh, da war ich gestern wohl einfach komplett unkonzentriert.

Jetzt ist mir alles glasklar.


Ich bedanke mich für die Hilfe und wünsche dir noch einen schönen Abend.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de