www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fourierreihe
Fourierreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:23 Di 20.01.2015
Autor: Exel84

Aufgabe
Setzen Sie die Funktion f(t) = [mm] t^{2} [/mm] , t [mm] \in [/mm] [ 0,l ]

a) l-periodisch

b) gerade und 2l-periodisch

c) ungerade und 2l-periodisch

Hallo,

Ich komme da mit der Aufgabenstellung nicht so ganz klar mit.
Also die Funktion: [mm] t^{2} [/mm] ist eine Parabel im Koordinatenursprung. So wie ich es verstanden habe, betrachten wir man bei  t [mm] \in [/mm] [ 0,l ] die eine Hälfte von der Parabel oder? Oder wie ist das zu verstehen?
Kann mir da jemand bitte Tipps geben?

Vg Exel84




Ich habe diese FRage noch in keinem anderen Forum gestellt!

        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Di 20.01.2015
Autor: leduart

Hallo
1. die Parabel vpn 0 bis 1 wird nach links und recht s jeweis 1 verschoben.
2. gerade, die Parabel von 0 bis 1 wird an y=0 gespiegelt, dann das Stück von -1 bis +1 periodisch fortgesetzr
3.  ungerade: Parabelstück punktspiegeln  an 0  Punkt bis -1, dann periodisch fortsetzen.
Gruss leduart

Bezug
                
Bezug
Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Mi 21.01.2015
Autor: Exel84

hallo,

ich habe die a) jetzt so gelöst:

meine Ausgangsformel:

[mm] \bruch{2}{l}\integral_{0}^{l}{t^{2}} [/mm] * cos [mm] (\bruch{2*\pi*k*t}{l}) [/mm] dt

damit mein Ergebnis nach 1. partieller Integration:

[mm] \bruch{l^{2}}{\pi*k}*sin (2*\pi*k) [/mm]

dann bleibt das Integral übrig:

[mm] \bruch{-2}{\pi*k} \integral_{0}^{l}{sin (\bruch{2*\pi*k*t}{l}) * t dt} [/mm]

meine Ergebnisse nach 2. partieller Integration:

für den 1. Teil:

[mm] \bruch{l^{2}}{\pi^{2}*k^{2}} [/mm] * cos [mm] (2*\pi*k) [/mm]

und der 2. Teil:

[mm] \bruch{-l^{2}}{2\pi^{3}*k^{3}} [/mm] * sin [mm] (2*\pi*k) [/mm]

damit als Endergebnis:

[mm] a_k= \bruch{l^{2}}{\pi*k}*sin (2*\pi*k) [/mm] + [mm] \bruch{l^{2}}{\pi^{2}*k^{2}} [/mm] * cos [mm] (2*\pi*k) [/mm] - [mm] \bruch{l^{2}}{2\pi^{3}*k^{3}} [/mm] * sin [mm] (2*\pi*k) [/mm]

Sind meine Rechnungen richtig?

Vg








Bezug
                        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Mi 21.01.2015
Autor: fred97


> hallo,
>  
> ich habe die a) jetzt so gelöst:
>  
> meine Ausgangsformel:
>  
> [mm]\bruch{2}{l}\integral_{0}^{l}{t^{2}}[/mm] * cos
> [mm](\bruch{2*\pi*k*t}{l})[/mm] dt
>  
> damit mein Ergebnis nach 1. partieller Integration:
>  
> [mm]\bruch{l^{2}}{\pi*k}*sin (2*\pi*k)[/mm]
>  
> dann bleibt das Integral übrig:
>  
> [mm]\bruch{-2}{\pi*k} \integral_{0}^{l}{sin (\bruch{2*\pi*k*t}{l}) * t dt}[/mm]
>  
> meine Ergebnisse nach 2. partieller Integration:
>  
> für den 1. Teil:
>  
> [mm]\bruch{l^{2}}{\pi^{2}*k^{2}}[/mm] * cos [mm](2*\pi*k)[/mm]
>  
> und der 2. Teil:
>  
> [mm]\bruch{-l^{2}}{2\pi^{3}*k^{3}}[/mm] * sin [mm](2*\pi*k)[/mm]
>  
> damit als Endergebnis:
>  
> [mm]a_k= \bruch{l^{2}}{\pi*k}*sin (2*\pi*k)[/mm] +
> [mm]\bruch{l^{2}}{\pi^{2}*k^{2}}[/mm] * cos [mm](2*\pi*k)[/mm] -
> [mm]\bruch{l^{2}}{2\pi^{3}*k^{3}}[/mm] * sin [mm](2*\pi*k)[/mm]
>  
> Sind meine Rechnungen richtig?

Ich habe keine Lust das selbst zu rechnen, Du hast viele Zwischenschritte weggelassen.

Nebenbei:    [mm] cos(2*\pi*k)=1 [/mm] und [mm] sin(2*\pi*k)=0 [/mm]


FRED

> Vg
>  
>
>
>
>
>
>  


Bezug
        
Bezug
Fourierreihe: Aufgabenteil c)
Status: (Frage) beantwortet Status 
Datum: 11:29 Fr 23.01.2015
Autor: Exel84

Aufgabe
Die Aufgabenstellung war ja diese:

Setzen Sie die Funktion f(t) = $ [mm] t^{2} [/mm] $ , t $ [mm] \in [/mm] $ [ 0,L ]

c) ungerade und 2L-periodisch

Hallo zusammen,

ich habe die c) jetzt so gelöst:

[mm] b_k [/mm] = [mm] \bruch{2}{L} \integral_{0}^{L}{t^{2} * sin (k*\omega*t) dt} [/mm]

f´(t) = sin [mm] (k*\omega*t) [/mm] ; f(t) = [mm] -\bruch{1}{k*\omega} [/mm] * cos [mm] (k*\omega*t) [/mm]

g(t) = [mm] t^{2} [/mm] ; g´(t) = 2t

Partielle Integration: (1. Teil)

[mm] (-\bruch{1}{k*\omega} [/mm] * cos [mm] (k*\omega*t)) [/mm] (Grenzen von 0 bis L)

= [mm] (-\bruch{L^{3}}{k*\pi} [/mm] * cos [mm] (k*\pi)) [/mm]  (mit [mm] \omega= \bruch{\pi}{L}) [/mm]

daraus folt: cos [mm] (k*\pi) [/mm] = -1

damit mein Ergebnis für Teil 1: [mm] \bruch{L^{3}}{k*\pi} [/mm]

ist das Ergebnis so richtig?

Vg



Bezug
                
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Fr 23.01.2015
Autor: Marcel

Hallo Exel,

ich habe, wie Fred auch, keine Lust, sowas selbst nachzurechnen. Und
Du kannst den Formeleditor auch besser benutzen, denn so sieht man
nicht wirklich, was Du da gerechnet hast (Du solltest/musst eh Latex lernen).

Wir können aber folgendes machen: Ich gebe Dir einen Programm-Code für
Octave. Damit kannst Du Dir den Graphen von Fourier-Teilsummen plotten
lassen.

Den Code mit einem Beispiel habe ich Dir angehangen bzw. den füge ich
auch hier ein; das Beispiel findest Du []auf Folie 4.
Beachte aber, dass dort [mm] ($FR_f$: [/mm] "FourierReihe von [mm] $f\,$") [/mm]

    $f(t) [mm] \sim FR_f(t)=a_0+\sum_{k=1}^\infty \{a_k \cos(k \omega t)+b_k \sin(k \omega t)\}=\sum_{k=0}^\infty \{a_k \cos(k \omega t)+b_k \sin(k \omega t)\}$ [/mm]

verwendet wird - dort steht also [mm] $a_0$ [/mm] bei der Fourierreihe, während des öfteren
an dieser Stelle auch [mm] $a_0/2$ [/mm] verwendet wird.

1: L = 2*pi; % Periode
2: delta_t = 0.001;
3: t=[-2*L:delta_t:2*L];
4: f0 = 1/L; % Grundfrequenz
5: w0 = 2*pi*f0; % zur Grundfrequenz zugehörige Kreisfrequenz omega
6: FTS = 0; % FTS: "Fourierteilsumme": 
7:          % FTS(t) = a_0+sum_{k=0}^N (a_k cos(kwt) + b_k sin(kwt))
8: KoeffVek = [pi/4, 0; ...
9:             1/(pi*1^2)*(-2), (-1)^(1+1)/1; ...
10: 0              , (-1)^(2+1)/2; ...
11: 1/(pi*3^2)*(-2), (-1)^(3+1)/3; ...
12: 0              , (-1)^(4+1)/4; ...
13: 1/(pi*5^2)*(-2), (-1)^(5+1)/5; ...
14: 1/(pi*7^2)*(-2), (-1)^(7+1)/7; ...
15: ]
16: % KoeffVek sammelt die obigen Koeffizienten in einer Matrix: a_0, b_0=0;
17: %                                                            a_1, b_1;
18: %                                                            a_2, b_2;
19: %                                                            usw.
20: for k=0:size(KoeffVek,1)-1
21:   FTS = FTS + KoeffVek(k+1,1)*cos(k*w0*t) + KoeffVek(k+1,2)*sin(k*w0*t);
22: end;
23: plot(t,FTS,'r -o'); hold on;
24: t2 = 0 : delta_t : L;
25: f = (0 < t2 & t2 < L/2).*t2+(t2 >= L & t2 <= L).*0;
26: plot(t2,f,'g'); hold off;
27: legend({'Berechnete FTS','Ausgangsfunktion'});


Vergleichen musst Du vor allem den Teil, wo die grüne Funktion (noch nicht
periodisch fortgesetzt) definiert ist. Dargestellt habe ich die Fourierteilsumme

    [mm] $\sum_{k=0}^6 \{a_k \cos(...)+b_k \sin(...)\} [/mm] $

mit den Koeffizienten, die auf den verlinkten Folien berechnet worden sind.
In der ersten (oder "0-ten") Zeile der Koeffizientenmatrix kannst Du eigentlich
den zweiten Wert immer auf 0 setzen. Das wäre der Koeffizient [mm] $b_0\,,$ [/mm] und
der würde in der Fourierreihe als Summand [mm] $b_0*\sin(0*\omega*t)$ [/mm] stehen, welcher
stets 0 ist, da [mm] $\sin(0)=0\,.$ [/mm]

[a]Datei-Anhang

Gruß,
  Marcel

Dateianhänge:
Anhang Nr. 1 (Typ: m) [nicht öffentlich]
Bezug
                        
Bezug
Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Fr 23.01.2015
Autor: Exel84

danke für deine schnelle Antwort.

Aber ich wollte eigentlich nur, ob meine Schritte die ich da habe so stimmen. Der Rest, der danach gerechnet werden soll, wird 0 und fällt weg. Somit wäre mein [mm] b_k [/mm] einfach nur das Ergebnis von mir. Nur weiss ich nicht, ob ich bei den Schritten einen Fehler gemacht habe.

Aber danke trotzdem für deine große Mühe!!

Vg

Bezug
                                
Bezug
Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 Fr 23.01.2015
Autor: Marcel

Hallo,

> danke für deine schnelle Antwort.
>  
> Aber ich wollte eigentlich nur, ob meine Schritte die ich
> da habe so stimmen. Der Rest, der danach gerechnet werden
> soll, wird 0 und fällt weg. Somit wäre mein [mm]b_k[/mm] einfach
> nur das Ergebnis von mir. Nur weiss ich nicht, ob ich bei
> den Schritten einen Fehler gemacht habe.

schreib' doch mal Deine Rechnung komplett hin. Dann schau' ich mir das,
sofern ich noch die Zeit finde (nachher muss ich weg), gerne auch mal
an und kontrolliere Deine Rechenschritte.

Ansonsten kannst Du Dir auch Integrale (oder Integralwerte) mit

    []Wolframalpha

ausgeben lassen, bspw.:

    []http://www.wolframalpha.com/input/?i=int%28x^2%2Cx%29
    
Schreibst Du [mm] int(x^2,x,0,pi), [/mm] so wird das Integral in den Grenzen von 0 bis
[mm] $\pi$ [/mm] ausgewertet. Damit kannst Du auch Deine Rechnung selbst Schritt für
Schritt kontrollieren lassen.

Was mir bei Deinen [mm] $b_k$ [/mm] auffällt: Hast Du beachtet, dass die Funktion laut Aufgabenstellung die Periode $2L$ hat?

Es ist [mm] $f(x)=-x^2$ [/mm] für $-L < x <0$ und [mm] $f(x)=x^2$ [/mm] für $0 [mm] \le [/mm] x [mm] \le [/mm] L$.
Vermutlich fehlt bei deinen F.K. dann ein Faktor 2, aber das habe ich mir
jetzt nicht genau überlegt (auch, wenn das nur eine 1-Minuten-Aufgabe
wäre).

> Aber danke trotzdem für deine große Mühe!!

Wie gesagt: Du könntest auch im ersten Schritt mal Dein Ergebnis testen,
indem Du das in meinem Code anpasst. Ich habe dort etwas unglücklich
die Periode L genannt, aber auch das sollte keine allzu großen Probleme
machen.

Wenn Du willst: Schreibe mir nochmal genau hin, wie Deine [mm] $a_k$, $b_k$ [/mm]
aussehen (ich nehme an, weil die Fkt. ja ungerade ist, sind alle [mm] $a_k=0$ [/mm] und
Dein Ergebnis sind nur die [mm] $b_k$). [/mm]

Dann teste ich das mal für ein Paar L, ob die FTS passend aussieht - falls
Du das mit dem Code nicht hinbekommst.

Achja: Wolframalpha kommt auch mit Parametern zurecht:

    []http://www.wolframalpha.com/input/?i=int%28k*x^2%2Cx%29

Gruß,
  Marcel

Bezug
                                
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Sa 24.01.2015
Autor: Infinit

Hallo excel84,
ich bekomme da als Ergebnis über das Integral  einen Sinus- und einen Cosinusterm raus:
[mm] \bruch{2}{L} \int x^2 \sin(\bruch{k\pi t}{L}) \,dt = \bruch{(4L^2-2\pi^2k^2t^2) \cos(\bruch{k \pi t}{L}) + 4 \pi k L t \sin(\bruch{k \pi t}{L})}{k^3 \pi^3} [/mm]
Und dann die Grenzen einsetzen von 0 bis L.
Viele Grüße,
Infinit

Bezug
                
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Fr 23.01.2015
Autor: Marcel

Hallo,


> daraus folt: cos [mm](k*\pi)[/mm] = -1

jedenfalls ist [mm] $\cos(k*\pi)=(-1)^k$! [/mm] Korrigiere damit nochmal Dein Ergebnis!

Gruß,
  Marcel

Bezug
                
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Fr 23.01.2015
Autor: Marcel

Hallo,

> Die Aufgabenstellung war ja diese:
>  
> Setzen Sie die Funktion f(t) = [mm]t^{2}[/mm] , t [mm]\in[/mm] [ 0,L ]
>  
> c) ungerade und 2L-periodisch
>  Hallo zusammen,
>  
> ich habe die c) jetzt so gelöst:
>  
> [mm]b_k[/mm] = [mm]\bruch{2}{L} \integral_{0}^{L}{t^{2} * sin (k*\omega*t) dt}[/mm]
>  
> f´(t) = sin [mm](k*\omega*t)[/mm] ; f(t) = [mm]-\bruch{1}{k*\omega}[/mm] *
> cos [mm](k*\omega*t)[/mm]
>  
> g(t) = [mm]t^{2}[/mm] ; g´(t) = 2t
>  
> Partielle Integration: (1. Teil)
>  
> [mm](-\bruch{1}{k*\omega}[/mm] * cos [mm](k*\omega*t))[/mm] (Grenzen von 0
> bis L)
>  
> = [mm](-\bruch{L^{3}}{k*\pi}[/mm] * cos [mm](k*\pi))[/mm]  (mit [mm]\omega= \bruch{\pi}{L})[/mm]
>  
> daraus folt: cos [mm](k*\pi)[/mm] = -1
>  
> damit mein Ergebnis für Teil 1: [mm]\bruch{L^{3}}{k*\pi}[/mm]
>  
> ist das Ergebnis so richtig?

ich habe das Ergebnis mal kontrolliert. Die Fourierteilsummen (wenn ich
die Korrektur [mm] $\cos(k*\pi)=(-1)^k$ [/mm] nehme) würden sich einer Sägezahnfunktion
annähern.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de