www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichungen
Differentialgleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:27 Sa 26.12.2015
Autor: Martin_Ph

Aufgabe
a) Gegeben sei das Anfangswertproblem
y'= 2xy = f(x,y(x)), y(0)=1 für [mm] x\in [/mm] I [mm] \subseteq\IR [/mm]

Weiter sei die Iterationsfolge [mm] (y_{n}(x))_{n\in\IN} [/mm] gegeben durch
[mm] y_{0}(x) [/mm] = 1 für [mm] x\in [/mm] I und [mm] y_{n+1}(x) [/mm] = [mm] y_{0}(x) [/mm] + [mm] \integral_{0}^{x}{f(t,y_{n}(t)) dt} [/mm] für alle n = 0,1,2,3,.....

i) Berechnen Sie [mm] y_{n}(x) [/mm] für n = 0,1,2

ii) Leiten Sie daraus eine allgemeine Formel für [mm] y_{n}(x) [/mm] her und beweisen Sie diese mit einer vollständigen Induktion über n

iii) Bestimmen Sie [mm] \limes_{n\rightarrow\infty}y_{n}(x) [/mm] für [mm] x\in [/mm] I.

iv) Zeigen Sie, dass dieser Limes tatsächlich eine Lösung des AWP ist.


b) Zeigen Sie, dass sich eine DGL n-ter Ordnung, [mm] y^{n}= F(t,y,y',...,y^{(n-1)}), [/mm] als ein Differentialgleichungssystem 1. Ordnung der Form
x'= f(t,x) mit f(t,x) = [mm] (x_{2},...,x_{n},F(t,x))^{T} [/mm]
schreiben lässt

ZU a):

i) und ii): Diese 2 Punkte waren kein Problem. Komm auf [mm] y_{n}(x)=\summe_{i=1}^{n}\bruch{x^{2i}}{i!}. [/mm] Induktionsbeweis hat auch gut hingehauen

iii) Hier weiß ich nicht wie ich es rechnerisch zeige aber meines Erachtens müsste für den Grenzwert [mm] e^{x^{2}} [/mm] rauskommen, was sich in iv) auch bestätigt. Frage ist also wie zeige ich as rechnerisch?


iv)  

y'=2xy

y identisch 0 ist Lsg der DGL aber keine Lag des AWP

y'=2xy [mm] \Rightarrow [/mm] ... [mm] \Rightarrow [/mm] y = C [mm] e^{x^{2}} [/mm]

mit AWP folgt C=1 [mm] \Rightarrow [/mm] y = [mm] e^{x^{2}} [/mm] ist Lsg des AWP

Aufgabe b) folgt noch bisher noch keine Idee

        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Sa 26.12.2015
Autor: Jule2

Also bei der iii) hast du das Ergebnis doch fast geschenkt!!
Denn wenn du dir deine Lsg zu ii) anschaust und n gegen unendlich schickst ist dass doch gerade die reihenentwicklung der e-Funktion!!!
LG

Bezug
                
Bezug
Differentialgleichungen: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 26.12.2015
Autor: Martin_Ph

Aufgabe
siehe oben

ja das stimmt hab ich im Grunde auch gesehen
Kann man das so aufschreiben:

[mm] \limes_{n\rightarrow\infty}y_{n}(x)=\summe_{n=0}^{\infty}\bruch{x^{2n}}{n!}=\summe_{n=0}^{\infty}\bruch{(x^{2})^{n}}{n!}=e^{x^{2}} [/mm]

Bezug
                        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 26.12.2015
Autor: fred97


> siehe oben
>  ja das stimmt hab ich im Grunde auch gesehen
> Kann man das so aufschreiben:
>  
> [mm]\limes_{n\rightarrow\infty}y_{n}(x)=\summe_{n=0}^{\infty}\bruch{x^{2n}}{n!}=\summe_{n=0}^{\infty}\bruch{(x^{2})^{n}}{n!}=e^{x^{2}}[/mm]

Ja,genau so

Fred

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de