www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL homogen
DGL homogen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL homogen: DGL
Status: (Frage) beantwortet Status 
Datum: 14:29 Di 20.03.2018
Autor: Cash33

Aufgabe
Da ich meistens zu beginn einer DGL Rechnung Probleme habe poste ich diese Aufgabe um die Richtigkeit zu überprüfen :

Gegeben sei folgende DGL:

x*y'(x) +y(x) = x*cos(x)

a) Bestimmen sie eine homogene Lösung mit Trennung der Veränderlichen.
b) Bestimmen sie eine partikuläre Lösung mit Variation der Konstanten .

c) Bestimmen sie die allgemeine Lösung

Ansatz:

x*y'(x) +y(x) = 0

x*y'(x) = -y(x)

x*dy/dx = -y

ln(y) = -ln(x) +C

ln(y) = [mm] ln(e^C) [/mm] -ln(x)

[mm] y=\bruch{e^C}{x} [/mm]

[mm] e^c [/mm] = C

[mm] y=\bruch{C}{x} [/mm]

Passt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
DGL homogen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Di 20.03.2018
Autor: Diophant

Hallo,

> Da ich meistens zu beginn einer DGL Rechnung Probleme habe
> poste ich diese Aufgabe um die Richtigkeit zu überprüfen
> :

>

> Gegeben sei folgende DGL:

>

> x*y'(x) +y(x) = x*cos(x)

>

> a) Bestimmen sie eine homogene Lösung mit Trennung der
> Veränderlichen.
> b) Bestimmen sie eine partikuläre Lösung mit Variation
> der Konstanten .

>

> c) Bestimmen sie die allgemeine Lösung

>

> Ansatz:

>

> x*y'(x) +y(x) = 0

>

> x*y'(x) = -y(x)

>

> x*dy/dx = -y

>

> ln(y) = -ln(x) +C

>

> ln(y) = [mm]ln(e^C)[/mm] -ln(x)

>

> [mm]y=\bruch{e^C}{x}[/mm]

>

> [mm]e^c[/mm] = C

>

> [mm]y=\bruch{C}{x}[/mm]

>

> Passt?

Bis auf deine hartnäckigen Fehler im Umgang mit dem Integral

[mm] \int{ \frac{dx}{x}}=ln|x|+C[/mm]

stimmt die Lösung. Die betreffende Zeile muss hier

ln|y|=-ln|x|+C

heißen, da ja kein Definitionsbereich für die Lösungfunktionen vorgegeben ist, wie beim letzten Mal.

Außerdem solltest du darauf achten, wenn du eine Konstante umdefinierst, dies durch Wechsel der verwendeten Symbole darzustellen, also etwa

[mm] c=e^C [/mm]

In der Mathematik reicht es nicht aus, das am Ende das Ergebnis passt, der Weg muss ebenfalls stimmen!

Ich würde dir für diesen Lösungsweg, so ich ihn korrigieren würde, Punkte abziehen. Aus den genannten Gründen.

Und zum Schluss, auch erneut: es gibt keine homogenen Lösungen, das ist sprachlicher Unsinn (auch wenn sich das gerade irgendwie durchzusetzen scheint). Was du berechnet hast, ist die Lösung der zuhehörigen homogenen Differenzialgleichung.


Gruß, Diophant

Bezug
                
Bezug
DGL homogen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Di 20.03.2018
Autor: Cash33

Danke .

Das andere scheint analog wie die letzte Aufgabe.

Bezug
                        
Bezug
DGL homogen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Di 20.03.2018
Autor: Diophant

Hallo,

> Danke .

>

> Das andere scheint analog wie die letzte Aufgabe.

Die Vorgehensweise ist dieselbe, ja.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de