www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertaufgabe
Anfangswertaufgabe < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertaufgabe: Rückfrage, Idee, Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:10 Do 07.12.2017
Autor: Dom_89

Aufgabe
Bestimme die Lösung der Anfangswertaufgabe:

y`(x)= [mm] (y(x))^2*e^{3x} [/mm] ; y(0) = 1

Hallo,

hier einmal mein Vorgehen:

y'(x)= [mm] (y(x))^2*e^{3x} [/mm]  <=> [mm] \bruch{dy}{dx} [/mm] = [mm] y^2*e^{3x} [/mm]
[mm] \integral {\bruch{1}{y^2}} [/mm] = [mm] e^{3x} [/mm] dx
[mm] -\bruch{1}{y}+c_{1} [/mm] = [mm] \bruch{1}{3}e^{3x}+c_{2} [/mm]
[mm] -\bruch{1}{y} [/mm] = [mm] \bruch{1}{3}e^{3x}+C [/mm]

-1 = [mm] y(\bruch{1}{3}e^{3x}+C) [/mm] <=> y(x) = [mm] -\bruch{3}{e^{3x}+C} [/mm]

Einbeziehen des Anfangwertes:

y(0) = C = -1 => y(0) = [mm] -\bruch{3}{e^{3x}-1} [/mm]

Ist mein Vorgehen so in Ordnung, oder muss noch etwas geändert werden ?

Vielen Dank!

        
Bezug
Anfangswertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Do 07.12.2017
Autor: Diophant

Hallo,

> Bestimme die Lösung der Anfangswertaufgabe:

>

> y'(x)= [mm](y(x))^2*e^{3x}[/mm] ; y(0) = 1
> Hallo,

>

> hier einmal mein Vorgehen:

>

> y'(x)= [mm](y(x))^2*e^{3x}[/mm] <=> [mm]\bruch{dy}{dx}[/mm] = [mm]y^2*e^{3x}[/mm]
> [mm]\integral {\bruch{1}{y^2}}[/mm] = [mm]e^{3x}[/mm] dx

hier fehlt dem linken Integral das Differenzial dy. Ansonsten passt es.

> [mm]-\bruch{1}{y}+c_{1}[/mm] = [mm]\bruch{1}{3}e^{3x}+c_{2}[/mm]

Integriert hast du korrekt. [ok]

Wieso addierst du auf beiden Seiten eine Konstante, macht ihr das so? Es ist nicht üblich, aber natürlich auch nicht falsch (denn du fasst im nächsten Schritt beide Konstanten sowieso wieder zu einer zusammen).


> [mm]-\bruch{1}{y}[/mm] = [mm]\bruch{1}{3}e^{3x}+C[/mm]

>

> -1 = [mm]y(\bruch{1}{3}e^{3x}+C)[/mm] <=> y(x) =
> [mm]-\bruch{3}{e^{3x}+C}[/mm]

>

Auch das passt, wobei du jetzt streng genommen die Konstante nochmals austauschen müsstest (es ist nicht mehr dieselbe wie vorhin, mache dir das klar!). Oder du bildest den Kehrwert korrekt, dann bekommst du mit der Konstante C aber

[mm]y=- \frac{3}{e^{3x}+3C}[/mm]

heraus.

> Einbeziehen des Anfangwertes:

>

> y(0) = C = -1 => y(0) = [mm]-\bruch{3}{e^{3x}-1}[/mm]

>

Hier ist ein Fehler, die C=-1 sind falsch.

Löse die Gleichung

[mm] e^{3*0}+C=1+C=-3 [/mm]

korrekt nach C auf.

> Ist mein Vorgehen so in Ordnung, oder muss noch etwas
> geändert werden ?

Wie gesagt, der einzige wirkliche Fehler ist der falsche Wert für C am Ende.


Gruß, Diophant

Bezug
                
Bezug
Anfangswertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Do 07.12.2017
Autor: Dom_89

Hallo,

vielen Dank für die Antwort!

Somit ist C = -4 und es müsste also lauten:

y(x) = [mm] -\bruch{3}{e^{3x}-4} [/mm]

Bezug
                        
Bezug
Anfangswertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Do 07.12.2017
Autor: fred97


> Hallo,
>  
> vielen Dank für die Antwort!
>  
> Somit ist C = -4 und es müsste also lauten:
>  
> y(x) = [mm]-\bruch{3}{e^{3x}-4}[/mm]  

Ja, jetzt stimmt es.  Eine simple Probe hätte Dir auch gezeigt, dass das richtig ist, FRED wäre also nicht nötig gewesen ! Was ich damit sagen will: immer schön die Probe machen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de