www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Abstruser Zusammenhang
Abstruser Zusammenhang < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstruser Zusammenhang: poln. Vorschlag zur IMO 1995
Status: (Frage) beantwortet Status 
Datum: 11:39 So 10.09.2006
Autor: Brinki

Aufgabe
Für jedes x setze man
[mm]p(x) = \mbox{ kleinste Primzahl, die x nicht teilt,}[/mm]
[mm] q(x) = \begin{cases}\mbox{ Produkt aller Primzahlen, die kleiner als } p(x)\mbox{ sind}, & \mbox{für } p(x)>2 \\ 1, & \mbox{für } p(x)=2 \end{cases}[/mm]
Man betrachte die auf folgende Weise definierte Folge:
[mm] x_0=1, \mbox{ } x_{n+1}=\bruch{x_n*p(x_n)}{q(x_n)} [/mm]

Die eigentliche Aufgabenstellung lautete:
[mm] \mbox{Finde alle }[/mm] [mm]n\ge0[/mm] [mm] \mbox{ mit }[/mm] [mm]x_n=1995[/mm].


Ordnet man alle Primzahlen der Größe nach , so ist [mm]P_0=2; P_1=3; P_2=5; P_4=7; ... P_7=19; ...[/mm]

Stellt man das Folgenglied [mm] x_n [/mm] in seiner Primfaktorzerlegung dar, so ergiebt sich (für mich) ein unerklärlicher Zusamenhang zur Darstellung der Indexnummer [mm]n[/mm] im Zweiersystem.

Scheinbar gilt:
[mm] \mbox{Wenn } x_n = P_a*P_b*P_c* ... P_i \gdw n=2^a+2^b+2^c+ ... 2^i[/mm]


Wie man leicht nachrechnet stimmt dies auch, denn
[mm] \mbox{Für}[/mm]  [mm]x_n=1995=3 * 5*7*19=P_1*P_2*P_3*P_7 [/mm] [mm] \mbox{ erhält man }[/mm] [mm]n=2^1+2^2+2^3+2^7=142.[/mm]


In der Anlage [a]Anlage findet ihr die Rechnungen bis n=12.

Warum stimmt dies immer? Gibt es hierfür einen Beweis diesen Zusammenhang zwischen Primfaktorzerlegung des Folgengliedes und der Dualdarstellung der Folgennummer?

Für eure Hilfe vielen Dank im voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Grüße
Brinki

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Abstruser Zusammenhang: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 So 10.09.2006
Autor: ullim

Hallo Brinki,

ja, Deine Vermutung bzgl. des Zusammenhangs zwischen Primfaktorzerlegung des Folgengliedes und der Dualdarstellung der Folgennummer stimmt.

Man kann es mit vollständiger Induktion beweisen.

Induktionsanfang mit n = 1.

Hier gilt

n = [mm] 2^{0} [/mm]

[mm] x_{1} [/mm] = [mm] \bruch{2}{1} [/mm] = 2

und [mm] p_{0} [/mm] = 2.

Also ist der Induktionsanfang in Ordnung.


Jetzt kommt der Schritt von n auf n+1


Hier wird die Fallunterscheidung n = Gerade und n = Ungerade gemacht.


1. n = Gerade

Wenn n = Gerade ist, bedeutet das, das in der Sume für n der Summand [mm] 2^{0} [/mm] nicht vorkommt aber als Summand von n+1.

Zu beweisen ist also, das [mm] p_{0} [/mm] = 2 als Faktor von [mm] x_{n+1} [/mm] vorkommt.

Entsprechend der Induktionsvoraussetzung kommt [mm] p_{0} [/mm] = 2 nicht als Faktor in [mm] x_{n} [/mm] vor. D.h. aber, das [mm] p(x_{n}) [/mm] = 2 und [mm] q(x_{n}) [/mm] = 1 gilt. [mm] \Rightarrow [/mm]

[mm] x_{n+1} [/mm] = [mm] 2x_{n} [/mm]

womit für Gerade n der Beweis erbracht währe.

1. n = Ungerade


Da ich jetzt keine Zeit mehr habe, liefere ich diesen Beweis etwas später. Vielleicht reichts ja auch so schon.

Und jetzt gehts weiter:



n besitzt eine Darstellung mit einem k [mm] \ge [/mm] 1


n = [mm] \summe_{i=0}^{k-1}2^{i}+2^{k}\alpha \Rightarrow [/mm]

n + 1 = 1 + [mm] \summe_{i=0}^{k-1}2^{i} [/mm] + [mm] 2^{k}\alpha \Rightarrow [/mm]

n + 1 = [mm] 2^{k}(1+\alpha) [/mm]


D.h. es ist zu beweisen, dass [mm] p_{k} [/mm] Faktor von [mm] x_{n+1} [/mm] ist.


[mm] x_{n+1} [/mm] = [mm] x_{n} \bruch{p(x_{n})}{q(x_{n})} [/mm]

[mm] x_{n} [/mm] = [mm] R\produkt_{i=1}^{k-1}p_{i} [/mm]

[mm] p(x_{n}) [/mm] = [mm] p_{k} [/mm]

[mm] q(x_{n}) [/mm] = [mm] \produkt_{i=1}^{k-1}p_{i} \Rightarrow [/mm]

[mm] x_{n+1} [/mm] = [mm] R*p_{k} [/mm]

also ist [mm] p_{k} [/mm] Faktor von [mm] x_{n+1} [/mm] und der Beweis ist erbracht.

Bezug
                
Bezug
Abstruser Zusammenhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:30 So 10.09.2006
Autor: Brinki

Vielen Dank und Gratulation für die schöne Lösung.
Hätte nicht gedacht, dass das so leicht mit Induktion zu machen ist.

Grüße
Brinki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de