www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - links-/rechtsseitigeGW,monoton
links-/rechtsseitigeGW,monoton < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

links-/rechtsseitigeGW,monoton: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Fr 12.12.2014
Autor: sissile

Aufgabe
Warum existiert bei einer monotone Funktion f: [mm] \IR [/mm] -> [mm] \IR [/mm] an jeder Stelle der linksseitige sowie rechtsseitige Grenzwert?(ich sag nich dass diese gleich sind, aber beide existieren)

Also:
Sei x [mm] \in \IR [/mm] beliebig. Für jede Folge [mm] (x_n) [/mm]  mit [mm] x_n [/mm] in [mm] \IR [/mm] und [mm] x_n [/mm] < x so dass [mm] x_n [/mm] -> x [mm] (n->\infty) [/mm] gilt: [mm] lim_{n->\infty} f(x_n)=c [/mm]
Bzw. Für jede Folge [mm] (x_n) [/mm]  mit [mm] x_n [/mm] in [mm] \IR [/mm] und [mm] x_n [/mm] > x so dass [mm] x_n [/mm] -> x [mm] (n->\infty) [/mm] gilt: [mm] lim_{n->\infty} f(x_n)=d [/mm]

Hallo zusammen,

Die Frage kam auf bei dem Beweis, dass monotone Funktionen f: [mm] \IR-> \IR [/mm] höchstens abzählbar viele Unstetigkeitsstellen haben. Im Hinweis stand, dass man die Sprunghöhe betrachten soll. Hierzu bräuchte ich aber, dass es eben immer ein linksseitiger bzw. rechtsseitiger Grenzwert existiert.

LG,
sissi

        
Bezug
links-/rechtsseitigeGW,monoton: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Fr 12.12.2014
Autor: DieAcht

Hallo sissile!


Heuser:

Eine auf [mm] $[a,b]\$ [/mm] monotone Funktion [mm] $f\$ [/mm] besitzt in jedem Punkt von [mm] $[a,b]\$ [/mm]
alle einseitigen Grenzwerte, die sinnvollerweise vorhanden sein
können, d.h., es existieren die Limites

      [mm] f(\xi-) [/mm] für alle [mm] \xi\in(a,b] [/mm] und [mm] f(\xi+) [/mm] für alle [mm] \xi\in[a,b). [/mm]


Bei mir ist das Satz 39.3. Deine Aufgabe findest du auch dort.


Gruß
DieAcht

Bezug
                
Bezug
links-/rechtsseitigeGW,monoton: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:03 Fr 12.12.2014
Autor: sissile

Danke für den Hinweis, aber ich hab das Buch momentan nicht da (borge es mir immer in der Bibliothek aus).

Ich hab etwas herumprobiert:

O.B.d.A sei f monoton steigend,
y [mm] \in [/mm] [a,b] beliebig aber fest

A= [mm] \{f(x)|x A ist durch f(y) nach oben beschränkt, demnach hat A ein Supremum.
(*) Wenn y=a ist, dann ist jedoch A leer? Was mache ich in dem Fall?

[mm] \forall \epsilon>0: \exists x_0 [/mm] < y : sup A - [mm] \epsilon [/mm] < [mm] f(x_0) [/mm] < sup (A) [mm] \le [/mm] f(y)
Sei [mm] (t_n)_{n\in\IN} [/mm] eine beliebige Folge mit [mm] t_n [/mm] -> y mit [mm] t_n [/mm] < y [mm] \forall [/mm] n [mm] \in \IN [/mm]
ZZ.: [mm] \exists lim_{n->\infty} f(t_n) [/mm]
[mm] f(t_n) \in [/mm] A [mm] \forall [/mm] n [mm] \in \IN [/mm] => [mm] f(t_n) \le [/mm] sup A [mm] \le [/mm] f(y)
Da [mm] t_n [/mm] gegen y konvergiert, [mm] \exists [/mm] ein Index [mm] n_0\in \IN [/mm] sodass [mm] \forall [/mm] n [mm] \ge n_0 :x_0 \le t_n [/mm] wegen Monotonie folgt [mm] f(x_0) \le f(t_n) [/mm]
D.h. wir haben die Ungleichungskette:  sup A - [mm] \epsilon [/mm] < [mm] f(x_0) \le f(t_n) [/mm] < sup(A) + [mm] \epsilon \forall [/mm] n [mm] \ge n_0 [/mm]
q.e.d.

Beim rechtsseitigen Limes analog mit der Menge:
B= [mm] \{f(x)|y Selbe Problem wenn y=b ist.

Ich hoffe es passt so, wie gesagt bei (*) hab ich eine kleine Frage.

Bezug
                        
Bezug
links-/rechtsseitigeGW,monoton: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:42 Fr 12.12.2014
Autor: DieAcht

Ich habe gerade keine Zeit auf deinen Beweis einzugehen, aber
bezüglich deiner Frage: Heuser hat die Fälle ausgeschlossen.
Die von dir erwähnten zwei Fälle machen natürlich keinen Sinn
und aus diesem Grund existieren die Limites

      [mm] f(\xi-) [/mm] für alle [mm] \xi\in(a,b] [/mm] und [mm] f(\xi+) [/mm] für alle [mm] \xi\in[a,b). [/mm]

(Beachte die Klammerung!)

Und zwar ist für wachsendes [mm] $f\$ [/mm]

      [mm] f(\xi-)=\sup\{f(x)\colon x\in[a,\xi)\} [/mm] und [mm] f(\xi+)=\inf\{f(x)\colon x\in(\xi,b]\}. [/mm]

(Das steht auch im Heuser.)



Bezug
                                
Bezug
links-/rechtsseitigeGW,monoton: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:56 Sa 13.12.2014
Autor: sissile

Ja, das ist mir nun klar geworden. Danke!!
Ja, ich weiß ich muss in die Bibliothek fahren und mir Heuser holen;=)

LG,
sissi

Bezug
                        
Bezug
links-/rechtsseitigeGW,monoton: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 So 14.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
links-/rechtsseitigeGW,monoton: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Sa 13.12.2014
Autor: fred97

Schau mal hier:

http://www.iadm.uni-stuttgart.de/LstAnaMPhy/Weidl/analysis/vorlesung-analysis/node113.html

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de