www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Satz von Arzela-Ascoli
Satz von Arzela-Ascoli < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Arzela-Ascoli: Beweis
Status: (Frage) beantwortet Status 
Datum: 16:55 Do 06.10.2016
Autor: Lohrre

Aufgabe
Satz von Arzela Ascoli: J:=[a,b] , [mm] ({f_n})_{n \in \IN} [/mm] mit [mm] f_n: [/mm] J [mm] \to \IR [/mm] gleichgradig stetig. Außerdem [mm] |(f_n) [/mm] (x)| [mm] \le [/mm] C, für n [mm] \ge [/mm] 1, x [mm] \in [/mm] J. Dann existiert eine gleichmäßig konvergente Teilfolge [mm] {(f_n_k)}_{k \in \IN}. [/mm]

Hallo,

ich habe Probleme beim Beweis zum Satz von Arzela Ascoli.
Zum Beweis:

A:= [mm] {x_1,x_2, ...} [/mm] sei eine abzählbare in J dichte Punktemenge Die Folge [mm] {(f_n(x1))}_{n \in \IN} [/mm] ist beschränkt. (ERSTES WARUM?)

Nach Satz von Bolzano - Weierstraß existiert eine konvergente Teilfolge [mm] {(f_n_k(x1))}{k \in \IN}. [/mm] Die Folge [mm] {(f_n_k(x2))}_{k \in \IN} [/mm] ist ebenfalls beschränkt (WIEDER WARUM?), also existiert eine konvergente Teilfolge [mm] {(f_n_k_l(x2))}_{l \in \IN}. [/mm] Durch Fortfahren des Prozesses erhält man Folgen der Form:
[mm] {(f_n_k)}{k \in \IN} [/mm] ist konvergent für [mm] x_1 [/mm]
[mm] {(f_n_k_l)}{l \in \IN} [/mm] ist konvergent für [mm] x_1,x_2 [/mm]
.
.
.

Diagonalfolge [mm] f_N_1,f_n_k_1,... [/mm] ist für [mm] x_1,x_2,.. [/mm] konvergent. (WARUM??)
Es folgt,dass die Diagonalfolge glm. konvergent ist (wg. eines Satzes, der sagt, wenn die Funktionenfolge in J gleichgradigstetid und konv. für x einer dichten Teilmenge ist, dann konv. die Funktionenfolge auch für x [mm] \in [/mm] J.)


Hoffentlich findet sich wieder jemand, der mir weiterhelfen kann :)

Danke euch, mfg Lohrre

        
Bezug
Satz von Arzela-Ascoli: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Do 06.10.2016
Autor: fred97


> Satz von Arzela Ascoli: J:=[a,b] , [mm]({f_n})_{n \in \IN}[/mm] mit
> [mm]f_n:[/mm] J [mm]\to \IR[/mm] gleichgradig stetig. Außerdem [mm]|(f_n)[/mm] (x)|
> [mm]\le[/mm] C, für n [mm]\ge[/mm] 1, x [mm]\in[/mm] J. Dann existiert eine
> gleichmäßig konvergente Teilfolge [mm]{(f_n_k)}_{k \in \IN}.[/mm]
>  
> Hallo,
>  
> ich habe Probleme beim Beweis zum Satz von Arzela Ascoli.
> Zum Beweis:
>  
> A:= [mm]{x_1,x_2, ...}[/mm] sei eine abzählbare in J dichte
> Punktemenge Die Folge [mm]{(f_n(x1))}_{n \in \IN}[/mm] ist
> beschränkt. (ERSTES WARUM?)

es ist doch [mm] |f_n (x_1)| \le [/mm] C für jedes n ( nach Voraussetzung )


>  
> Nach Satz von Bolzano - Weierstraß existiert eine
> konvergente Teilfolge [mm]{(f_n_k(x1))}{k \in \IN}.[/mm] Die Folge
> [mm]{(f_n_k(x2))}_{k \in \IN}[/mm] ist ebenfalls beschränkt (WIEDER
> WARUM?),


gleicher Grund wie oben



> also existiert eine konvergente Teilfolge
> [mm]{(f_n_k_l(x2))}_{l \in \IN}.[/mm] Durch Fortfahren des Prozesses
> erhält man Folgen der Form:
>  [mm]{(f_n_k)}{k \in \IN}[/mm] ist konvergent für [mm]x_1[/mm]
>  [mm]{(f_n_k_l)}{l \in \IN}[/mm] ist konvergent für [mm]x_1,x_2[/mm]
>  .
>  .
>  .
>  
> Diagonalfolge [mm]f_N_1,f_n_k_1,...[/mm] ist für [mm]x_1,x_2,..[/mm]
> konvergent. (WARUM??)

Nach Konstruktion !


Fred


>   Es folgt,dass die Diagonalfolge glm. konvergent ist (wg.
> eines Satzes, der sagt, wenn die Funktionenfolge in J
> gleichgradigstetid und konv. für x einer dichten Teilmenge
> ist, dann konv. die Funktionenfolge auch für x [mm]\in[/mm] J.)
>  
>
> Hoffentlich findet sich wieder jemand, der mir weiterhelfen
> kann :)
>  
> Danke euch, mfg Lohrre


Bezug
                
Bezug
Satz von Arzela-Ascoli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Do 06.10.2016
Autor: Lohrre

Ok, danke! Die ersten zwei Warum's sind mir jetzt klar! Aber das dritte (nach Kosntruktion?) verstehe ich leider nicht.

MFG

Bezug
                        
Bezug
Satz von Arzela-Ascoli: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Fr 07.10.2016
Autor: fred97

$ [mm] {(f_{n_k})}_{k \in \IN} [/mm] $ ist konvergent für $ [mm] x_1 [/mm] $
$ [mm] {(f_{n_{k_l}})}_{l \in \IN} [/mm] $ ist konvergent für $ [mm] x_1,x_2 [/mm] $
...
...
...

Die Diagonalfolge nenne ich mal [mm] (d_j). [/mm]

Dann ist [mm] (d_j(x_1))_{j \ge 1} [/mm] eine Teilfolge von [mm] (f_{n_k}(x_1)), [/mm] also ist [mm] (d_j(x_1))_{j \ge 1} [/mm] konvergent.

Weiter ist  [mm] (d_j(x_1))_{j \ge 2} [/mm] eine Teilfolge von [mm] (f_{n_{k_l}})(x_2), [/mm] also ist [mm] (d_j(x_2))_{j \ge 1} [/mm] konvergent.

Genauso:  [mm] (d_j(x_3))_{j \ge 3} [/mm] ist eine Teilfolge der dritten Zeilenfolge oben, also ist [mm] (d_j(x_3))_{j \ge 1} [/mm] konvergent.


Etc .....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de