www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Quadr. Reste Primzahlen
Quadr. Reste Primzahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadr. Reste Primzahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:44 So 01.05.2016
Autor: DerBaum

Aufgabe
Seien [mm] $q_1,\ldots,q_r$ [/mm] paarweise verschiedene ungerade Primzahlen und [mm] $e_1,\ldots,e_r\in\{-1,1\}$. [/mm] Zeige, dass die folgenden Mengen unendlich sind:

[mm] (a)$P_1:=\left\{p\in\mathbb{P}\mid\forall i\in\{1,\ldots,r\}:\left(\frac{p}{q_i}\right)=e_i\right\}$ [/mm]
[mm] (b)$P_2:=\left\{p\in\mathbb{P}\mid\forall i\in\{1,\ldots,r\}:\left(\frac{q_i}{p}\right)=e_i\right\}$ [/mm]

Hinweis: Finde jeweils unendliche Teilmengen (Dirichlet)

Hier bezeichnet [mm] $\mathbb{P}$ [/mm] die Menge der Primzahlen und die Klammer in der Menge das Legendre-Symbol.

Guten Abend zusammen,

ich grüble seit einigen Stunden über diese Aufgabe nach, finde aber leider keinen richtigen Ansatz.

Wenn ich gezeigt habe, dass [mm] $P_1$ [/mm] unendlich ist, müsste das mit dem Reziprozitätsgesetz ja auch die [mm] $P_2$ [/mm] unendlich ergeben?

Welche Teilmengen könnten hier gemeint sein?

Ich weiß, dass es unendlich viele [mm] ${p}\in\mathbb{P}$ [/mm] so gibt, dass [mm] $q\in\mathbb{P}$ [/mm] quadratischer Rest mod $p$ ist, also  [mm] $P_q^+:=\left\{p\in\mathbb{P}\mid \left(\frac{{p}}{q}\right)=1\right\}$ [/mm] unendlich für alle [mm] $q\in\mathbb{P}, [/mm] q>2$ ist. Ebenso auch [mm] $P^-_q:=\left\{p\in\mathbb{P}\mid \left(\frac{{p}}{q}\right)=-1\right\}$, [/mm] also die entsprechenden quadratischen Nichtreste.

Wenn ich nun aber zum Beispiel [mm] $P_1$ [/mm] mit diesen Mengen darstellen will hätte ich ja
[mm] $$P_1=\left(\bigcap\limits_{i=1}^sP^-_{q_i}\right)\cap\left(\bigcap\limits_{j=s+1}^{r}P^+_{q_j}\right),$$ [/mm]
mit (o.B.d.A.) [mm] $e_1=\ldots=e_s=-1,\,e_{s+1}=\ldots=e_r=1, 0\leq s\leq [/mm] r$.

Aber das bringt mich irgendwie nicht weiter?

Würde mich sehr über ein wenig Hilfe freuen.

Vielen Dank und liebe Grüße
DerBaum

        
Bezug
Quadr. Reste Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:41 So 01.05.2016
Autor: statler

Guten Morgen,
ich schlage vor, daß du für Teil a) erstmal einen konkreten Fall untersuchst: Nimm z. B. 3 mit +1 (QR) und 5 mit -1 (NR). Welche Primzahlen erfüllen die beiden Bedingungen? In welcher/n arithmetischen Folge/n (Dirichlet) liegen sie?
Gruß aus HH
Dieter

Bezug
                
Bezug
Quadr. Reste Primzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 So 01.05.2016
Autor: DerBaum

Hallo statler,

vielen Dank erst einmal für deine Antwort!

Ich habe das mal am von dir genannten Beispiel durchgespielt.

Also für [mm] $q_1=3,q_2=5,e_1=1,e_2=-1$ [/mm] gilt:

[mm] $$\left(\frac{p}{q_1}\right)=e_1\Leftrightarrow p\equiv 0\mod 3\text{ oder } p\equiv 1\mod [/mm] 3,$$
also $p=3$ oder $p=3k+1$ für ein [mm] $k\in\mathbb{N}.$ [/mm]

Andererseits gilt
[mm] $$\left(\frac{p}{q_2}\right)=e_2\Leftrightarrow p\equiv 4\mod [/mm] 5,$$
also [mm] $p=5\ell+4$ [/mm] für ein [mm] $\ell\in\mathbb{N}$. [/mm]

Damit müsste $p$ von der Form $p=q_1q_2k+4$ für ein [mm] $k\in\mathbb{N}$ [/mm] sein. Da [mm] $\mathrm{ggT}(4,q_1q_2)=1$, [/mm]  gibt es nach Dirichlet davon also unendlich viele und dieser spezielle Fall wäre gezeigt.

Liebe Grüße
DerBaum

Bezug
                        
Bezug
Quadr. Reste Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 So 01.05.2016
Autor: statler

Hey du!

> Ich habe das mal am von dir genannten Beispiel
> durchgespielt.

Aber mit Mängeln!

>  
> Also für [mm]q_1=3,q_2=5,e_1=1,e_2=-1[/mm] gilt:
>  
> [mm]\left(\frac{p}{q_1}\right)=e_1\Leftrightarrow p\equiv 0\mod 3\text{ oder } p\equiv 1\mod 3,[/mm]
>  
> also [mm]p=3[/mm] oder [mm]p=3k+1[/mm] für ein [mm]k\in\mathbb{N}.[/mm]

0 ist zwar immer QR, aber das Restsymbol ist zunächst nur für teilerfremde Reste definiert. p = 3 entfällt.

>  
> Andererseits gilt
>  [mm]\left(\frac{p}{q_2}\right)=e_2\Leftrightarrow p\equiv 4\mod 5,[/mm]
>  
> also [mm]p=5\ell+4[/mm] für ein [mm]\ell\in\mathbb{N}[/mm].

Hier will ich gerade die Nichtreste haben, das sind 2 und 3. Insgesamt kriege ich dann modulo 15 die Restklassen 7 und 13. Genaugenommen kommt hier außer Dirichlet noch der Chinesische Restsatz ins Geschäft, dann solltest du aus diesem Beispiel einen allgemeinen Beweis zusammenlöten können.

In diesem Sinne
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de