www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - ODE zweiter Ordnung normieren
ODE zweiter Ordnung normieren < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ODE zweiter Ordnung normieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Di 19.12.2017
Autor: mondfisch

Hallo liebes Matheforum,

ich hänge hier länger an einem Problem und bräuchte jemanden der mir die "Augen öffnet" ;-). Es geht um die Lösung der ODE

[mm] \frac{d^2}{dx^2}u(x)-a*u(x)=\varphi(x) [/mm]


Nebenbei: Die Lösung dieser ODE ist das System cosh & sinh. Der Einfachheit halber nehmen wir (transformationsinvariante) homogene RB an. z.B. u'(0)=0 und u'(1)=0.

Jetzt kann man die ODE direkt lösen, was auf ein u(x) führt. Man kann aber auch vor dem Lösen normieren. Z.B. mit [mm] $y=\sqrt{a}x$, [/mm] weswegen [mm] $\frac{d^2}{dx^2}=a\frac{d^2}{dy^2}$ [/mm] und [mm] $u(x)=u(\frac{y}{\sqrt{a}})$=\tilde{u}(y) [/mm] bzw. [mm] $\varphi (x)=\varphi (\frac{y}{\sqrt{a}})$=\tilde{\varphi }(y) [/mm]

Setzt man das in die ODE ein erhält man

[mm] \frac{d^2}{dy^2}\tilde{u}(y)-\tilde{u}(y)=\frac{1}{a} \varphi (\frac{y}{\sqrt{a}}) [/mm]

Inhaltlich interpretiere ich das so: Es ist mir gestattet die Lösung $u(x)$ zu finden, indem ich die normierte Gleichung nach [mm] $\tilde{u}(y)$ [/mm] löse sofern ich die Störfunktion in [mm] $\frac{1}{a} \varphi (\frac{y}{\sqrt{a}})$ [/mm] modifiziere und die Lösung aus [mm] $u(x)=\tilde{u}(\sqrt{a}x)$ [/mm] rekonstruiere.

Soweit die Theorie. Ich habe das mal versucht mit Matlab zu verifizeren. Leider passt das überhaupt nicht. Nach Matlab bekomme ich identische Lösungen wenn ich

[mm] \frac{d^2}{dy^2}\tilde{u}(y)-\tilde{u}(y)=\frac{1}{\sqrt{a}} \varphi (\sqrt{a}y) [/mm]

löse und die Lösung als

[mm] $u(x)=\tilde{u}(\frac{y}{\sqrt{a}})$ [/mm]

schreibe. Wo ist der Denkfehler? In der Theorie oder der Software? V.a. das [mm] $\frac{1}{\sqrt{a}}$ [/mm] in der Störfunktion passt mir überhaupt nicht (kein Schreibfehler!)

PS.: Den Matlab Code kann ich auch posten - wollte das Forum hier aber nicht spammen.

Für eure Hilfe schon mal vielen Dank!
Mondfisch

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
ODE zweiter Ordnung normieren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Di 19.12.2017
Autor: leduart

Hallo
mit [mm] y=\sqrt(a)*x [/mm] wie kommst du auf  u(x)=u(y/sqrt(a))  statt u(x)=u(sqrt(a)*y) entsprechend auf [mm] \phi(x)? [/mm]
Gruß leduart

Bezug
                
Bezug
ODE zweiter Ordnung normieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:45 Mi 20.12.2017
Autor: mondfisch

Hallo leduart,

> mit [mm] $y=\sqrt{a}*x$ [/mm] wie kommst du auf  [mm] $u(x)=u(y\sqrt{a})$ [/mm]  statt [mm] $u(x)=u(\sqrt{a}*y)$ [/mm] entsprechend auf [mm] $\phi(x)$? [/mm]

[mm] $y=\sqrt{a}*x$ [/mm] nehmen und auf linker und rechter Seite durch [mm] $\sqrt{a}$ [/mm] dividieren und dann [mm] $x=\frac{y}{\sqrt{a}}$ [/mm] linksseitig in $u(x)$ und rechtsseitig in [mm] $\phi(x)$ [/mm] einsetzen.

Ich habs durchmultipliziert angeschrieben weil man beim Differentialoperator die Umkehrabbildung [mm] $\frac{dy}{dx}=\sqrt{a}$ [/mm] braucht:
[mm] \frac{d^2}{dx^2}u(x)=\frac{dy}{dx}\frac{d}{dy}(\frac{dy}{dx}\frac{d}{dy}u(\frac{y}{\sqrt{a}}))=a\frac{d^2}{dy^2}u(\frac{y}{\sqrt{a}}) [/mm]

Nach stundenlangem Rumprobieren habe ich den ersten Fehler in der Software gefunden:  "V.a. das $ [mm] \frac{1}{\sqrt{a}} [/mm] $ in der Störfunktion passt mir überhaupt nicht (kein Schreibfehler!)" --> Ist geklärt - es gehört tatsächlich $ [mm] \frac{1}{a} [/mm] $  hin.

Ich glaube die Schwierigkeit liegt darin zu verstehen in welchen Koordinatensystem man gerade arbeitet: y läuft von 0 bis [mm] $1*\sqrt{a}$ [/mm] während x von 0 bis 1 läuft. Deswegen wird man vermutlich [mm] $\tilde{u}$ [/mm] (läuft von 0 bis [mm] $1*\sqrt{a}$), [/mm] wenn man es in "x-Koordinaten" zurücktransformieren möchte mit [mm] $u(x)=\tilde{u}(\sqrt{a}*x)$ [/mm] umsetzen müssen. So 100% kapiert hab ichs aber immer noch nicht. Ist schwieriger als man auf den ersten Blick denken würde.

Gruß Mondfisch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de