www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integrierbarkeit der 1. Abl.
Integrierbarkeit der 1. Abl. < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbarkeit der 1. Abl.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:40 Do 10.08.2017
Autor: Die_Suedkurve

Hallo zusammen,

ich stehe vor dem Problem die folgende Fragestellung zu lösen (oder auch nicht :D):

Voraussetzungen:
[mm] $(\Omega, \mathcal{A}, \IP)$ [/mm] Wahrscheinlichkeitsraum
[mm] $\lambda$ [/mm] Lebesgue-Maß auf [mm] $\IR$ [/mm]
$X: [mm] (\Omega, \mathcal{A}) \to (\IR, \mathcal{B}(\IR))$ [/mm] reelle Zufallsvariable, wobei [mm] $\mathcal{B}(\IR)$ [/mm] die Borel-Sigma Algebra auf [mm] $\IR$ [/mm] bezeichnet
$E|X| < [mm] \infty$ [/mm]
$g: [mm] \IR \to \IR$ [/mm] absolut stetige Funktion
$E|g(X)| < [mm] \infty$ [/mm]

Ich behaupte nun, dass $E|g'(X)| < [mm] \infty$ [/mm] ist. Zumindest wäre es schön, wenn diese Behauptung richtig, da ich diese für eine andere Aussage benötige. :)

Hat jemand einen Tipp für mich, oder auch eine Ahnung, ob das richtig oder falsch sein könnte?
Falls diese in dieser Form nicht gilt, kann man irgendwelche weiteren Voraussetzungen machen, damit diese doch gilt?

Grüße
Die_Suedkurve

        
Bezug
Integrierbarkeit der 1. Abl.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Fr 18.08.2017
Autor: Gonozal_IX

Hiho,

deine Frage ist leider nicht mal wohldefiniert.
Nimm bspw. [mm] $X\equiv [/mm] 0, g(x) = [mm] \sqrt{x}$. [/mm]

D.h. obwohl g' [mm] $\lambda$-f.ü. [/mm] existiert, kann $X$ da so "viel" auf die Problemstellen abgebildet werden, dass das kaputt geht.
D.h. du benötigst mindestens schon mal, dass $P(X [mm] \in \{g' \text{ existiert nicht }\}) [/mm] = 0$.

Dann kannst du meines Erachtens nach aber $g$ auch als differenzierbar betrachten, weil du eh nur diesen Wertebereich beobachtest.

Hätte X eine (differenzierbare) Dichte, dann wäre nach Voraussetzung $E[|g(X)|] = - [mm] \int_{-\infty}^\infty [/mm] |g(x)| f(x) dx < [mm] \infty$ [/mm] und damit insbesondere [mm] $\lim_{x\to\infty} [/mm] |g(x)f(x)| = 0$

und damit mit partieller Integration

$E[g'(x)] = [mm] \int_{-\infty}^\infty [/mm] g'(x) f(x) dx = [mm] [g(x)f(x)]_{-\infty}^\infty [/mm] - [mm] \int_{-\infty}^\infty [/mm] g(x) f'(x) dx = - [mm] \int_{-\infty}^\infty [/mm] g(x) f'(x) dx$

Nun kannst du dir ja Integrationsbedingungen für f' überlegen :-)

Gruß,
Gono


Bezug
        
Bezug
Integrierbarkeit der 1. Abl.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 18.08.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de