www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration und Transformation
Integration und Transformation < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration und Transformation: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:57 Sa 18.06.2016
Autor: mathe_thommy

Aufgabe
Sei [mm] f:\IR \to \IR [/mm] stetig. Beweisen Sie:
[mm] \integral_{0}^{1}{\integral_{0}^{1}{f(x+y) dx}dy}=\integral_{0}^{2}{(1-|t-1|)f(t)dt}. [/mm]

Guten Tag!

Ich habe Schwierigkeiten, für den obigen Beweis einen Ansatz zu finden. Scheinbar wird hier ein Zweifachintegral zu einem einfachen Integral reduziert, indem die Variablen x und y durch t ersetzt werden. Wird dafür eine Transformation genutzt, auf die ich selbst kommen muss?
Da der Ausdruck (1-|t-1) rechts des Gleichheitszeichens vor der Funktion steht, kann ich ihn scheinbar "herausziehen". Ist es also eine sinnvolle Idee, mit diesem Ausdruck zu arbeiten, um auf eine geeignete Transformation zu kommen?

Für einen Denkanstoß wäre ich sehr dankbar!

Beste Grüße
mathe_thommy

        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Sa 18.06.2016
Autor: Leopold_Gast

Man kann das durch eine Substitution lösen. Dazu ersetzt man die Variablen [mm]x,y[/mm] durch [mm]s,t[/mm] gemäß

[mm]x = t-s \, , \ \ y = s[/mm]

Dabei geht das Einheitsquadrat [mm]I^2=[0,1]^2[/mm] in [mm]xy[/mm]-Koordinaten über in das Parallelogramm [mm]P[/mm] in [mm]st[/mm]-Koordinaten mit den Ecken [mm](s,t) = (0,0), \ (0,1), \ (1,2), \ (1,1)[/mm]. Der Betrag der Funktionaldeterminanten ist 1, so daß

[mm]\int_{I^2} f(x+y) ~ \mathrm{d}(x,y) = \int_P f(t) ~ \mathrm{d}(s,t)[/mm]

folgt. Und jetzt Fubini: außen über [mm]t[/mm] und innen über [mm]s[/mm] integrieren.

Bezug
                
Bezug
Integration und Transformation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:45 So 19.06.2016
Autor: mathe_thommy

Vielen Dank für die ausführliche Antwort!

Wenn ich alles richtig verstanden habe, erhalte ich nun doch:
[mm] \integral_{P}^{}{f(t) d(s,t)}=\integral_{0}^{2}{\integral_{0}^{1}{f(t) ds dt}}=\integral_{0}^{2}{f(t)\integral_{0}^{1}{1 ds dt}}=\integral_{0}^{2}{f(t) dt}=F(2)-F(0). [/mm]
Das sieht für mich nicht korrekt aus. Könnte mir bitte jemand helfen und einen Tipp geben, wo mein Fehler liegt?

Mit besten Grüßen
mathe_thommy

Bezug
                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 So 19.06.2016
Autor: Leopold_Gast

Der Fehler besteht darin, daß du über das rot schraffierte Rechteck statt über das grüne Parallelogramm integrierst.

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                                
Bezug
Integration und Transformation: Rückfragen
Status: (Frage) beantwortet Status 
Datum: 19:16 So 19.06.2016
Autor: mathe_thommy

Danke für die anschauliche Rückmeldung!
Scheinbar muss ich die Integrationsgrenzen anpassen. Da ich zuerst innen über s integriere, scheinen mit die Grenzen 0 und 1 beim inneren Integral korrekt zu sein (das würde auch mit der Grafik übereinstimmen). Muss ich beim äußeren Integral dann die beiden Geraden t und t-1 als Grenzen wählen?
Dann erhalte ich:
$ [mm] \integral_{P}^{}{f(t) d(s,t)}=\integral_{t}^{t-1}{\integral_{0}^{1}{f(t) ds dt}}=\integral_{t}^{t-1}{f(t)\integral_{0}^{1}{1 ds dt}}=\integral_{t}^{t-1}{f(t) dt}=F(t-1)-F(t). [/mm] $
Das sieht hinsichtlich des Ausdrucks $t-1$ doch gar nicht verkehrt aus. Jetzt muss ich nur umformen, um auf die Form der zu beweisenden Aussage zu kommen. Wie schaffe ich es, den Ausdruck $t-1$ aus dem Argument vor die Funktion zu ziehen?

Bezug
                                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 So 19.06.2016
Autor: Leopold_Gast

Es ist sinnfrei, als Integrationsgrenzen von [mm]t[/mm] abhängige Terme anzugeben, wenn über die Variable [mm]t[/mm] integriert wird.

Der Integrationsbereich für [mm]t[/mm] ist das Intervall [mm][0,2][/mm]. Allerdings hängen die Grenzen des inneren Integrals davon ab, wo ich mich mit [mm]t[/mm] im Intervall befinde. Man führt daher eine Fallunterscheidung durch:

[mm][0,2] = [0,1] \cup [1,2][/mm]

[Dateianhang nicht öffentlich]

Für [mm]t \in [0,1][/mm] fest gewählt variiert [mm]s[/mm] von 0 bis [mm]t[/mm]. Daher geht die Rechnung so:

[mm]\int_P f(t) ~ \mathrm{d}(s,t) \ = \ \int \limits_0^1 \int \limits_0^t f(t) ~ \mathrm{d}s ~ \mathrm{d}t \ + \ \int \limits_1^2 \int \limits_{\text{???}}^{\text{???}} f(t) ~ \mathrm{d}s ~ \mathrm{d}t[/mm]

Jetzt überlege selber, wie die inneren Integrationsgrenzen im zweiten Summanden heißen müssen. Die obere Grenze ist einfach. Und die untere?

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                                                
Bezug
Integration und Transformation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:23 So 19.06.2016
Autor: mathe_thommy

Jetzt ist mir die Abhängigkeit der Integrationsgrenzen von den Paramtern erst einmal richtig klar geworden - besten Dank!
Beim zweiten Summanden würde ich für das innere Integral $2-t$ wählen, da $s$ für $t=1$ den Wert 1 annehmen muss und für $t=1.5$ den Wert 0.5. ist das eine sinnvoll gewählte Grenze?

Bezug
                                                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 So 19.06.2016
Autor: Leopold_Gast

Ich verstehe deine ganze Argumentation nicht. Du sprichst von einzelnen Werten, dabei mußt du doch ein Integrationsintervall angeben.

Nehmen wir als Beispiel [mm]t=1{,}2[/mm]. Wenn du jetzt auf dieser Höhe eine Strecke parallel zur [mm]s[/mm]-Achse aus dem Parallelogramm ausschneidest, dann beginnen die [mm]s[/mm]-Werte der Punkte bei [mm]s=0{,}2[/mm] und enden bei [mm]s=1[/mm]. Das Intervall für [mm]s[/mm] ist daher [mm][0{,}2 \, ;1][/mm].
Nehmen wir als weiteres Beispiel [mm]t=1{,}9[/mm]. Jetzt beginnen die [mm]s[/mm]-Werte der Punkte der ausgeschnittenen Strecke bei [mm]s=0{,}9[/mm] und enden bei [mm]s=1[/mm]. Das Intervall für [mm]s[/mm] ist daher [mm][0{,}9 \, ;1][/mm].
Diesen an zwei Beispielen demonstrierten Zusammenhang mußt du jetzt allgemein beschreiben. Wenn du ein [mm]t \in [1,2][/mm] fest wählst, welches Intervall durchlaufen dann die [mm]s[/mm]-Werte der Punkte der aus dem Parallelogramm auf dieser [mm]t[/mm]-Höhe ausgeschnittenen Strecke?

Bezug
                                                                
Bezug
Integration und Transformation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:15 Mo 20.06.2016
Autor: mathe_thommy

Gut, $t$ ist beim zweiten Summanden beliebig aber fest aus dem Intervall $[1;2]$ zu wählen. Für den kleinsten Fall $t=1$ ist $s=1$, weiter ist für $t=2$ dann $s=0$. Entsprechend ist $s$ beliebig aber fest aus dem Intervall $[0;1]$ zu wählen, oder?
Damit wäre meinte Untergrenze 0 und meine Obergrenze 1?

Bezug
                                                                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Mo 20.06.2016
Autor: Gonozal_IX

Hiho,

> Gut, [mm]t[/mm] ist beim zweiten Summanden beliebig aber fest aus
> dem Intervall [mm][1;2][/mm] zu wählen. Für den kleinsten Fall [mm]t=1[/mm]
> ist [mm]s=1[/mm],

Das macht keinen Sinn. Du sollst für s ein Intervall angeben, da du ja die Strecke beschreiben sollst, die für gegebenes t noch im Parallelogramm liegt.

Für t=1 geht die Strecke von 0 bis 1. Also ist $s [mm] \in [/mm] [0,1]$  für $t=1$.

Das sollst du jetzt für beliebiges $t [mm] \in [/mm] [1,2]$ bestimmen und eine Darstellung für das Intervall finden. Das wird wohl von t abhängen müssen, wie du der Grafik entnehmen kannst.


Gruß,
Gono

Bezug
                                                                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Mo 20.06.2016
Autor: Leopold_Gast

Um die Antwort von Gonozal_IX zu unterstützen, einmal ganz ausführlich:

[mm]t=1{,}0: \ \ s \in [0{,}0 \, ; 1{,}0][/mm]

[mm]t=1{,}1: \ \ s \in [0{,}1 \, ; 1{,}0][/mm]

[mm]t=1{,}2: \ \ s \in [0{,}2 \, ; 1{,}0][/mm]

[mm]t=1{,}3: \ \ s \in [0{,}3 \, ; 1{,}0][/mm]

[mm]\vdots[/mm]

[mm]t=1{,}9: \ \ s \in [0{,}9 \, ; 1{,}0][/mm]

[mm]t=2{,}0: \ \ s \in [1{,}0 \, ; 1{,}0][/mm]

Und jetzt allgemein für [mm]t \in [1,2][/mm]:

[mm]s \in [ \ldots \, ; \ldots][/mm]

Und dieses von [mm]t[/mm] abhängige [mm]s[/mm]-Intervall ist das Integrationsintervall für die innere Integration im zweiten Summanden. Schau dir die letzte Zeichnung an.

Bezug
                                                                                
Bezug
Integration und Transformation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:32 Mo 20.06.2016
Autor: mathe_thommy

Erneut vielen Dank für die beiden ausführlichen Antworten!
Das bedeutet, ich muss $s [mm] \in [/mm] [|1-t|;1]$ wählen und kann dann ganz gewöhnlich integrieren?

Bezug
                                                                                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Mo 20.06.2016
Autor: Gonozal_IX

Hiho,

> Erneut vielen Dank für die beiden ausführlichen
> Antworten!
>  Das bedeutet, ich muss [mm]s \in [|1-t|;1][/mm] wählen

Da wir im Fall [mm] t\ge [/mm] 1 sind, kannst du den Betrag umschreiben. Im Allgemeinen gelten aber genau die Grenzen.

>  und kann dann ganz gewöhnlich integrieren?

natürlich. Die Grenzen setzt du ja erst am Ende ein und bis dahin ist der ganze Schmu schon erledigt.

Gruß,
Gono


Bezug
                                                                                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Mo 20.06.2016
Autor: Leopold_Gast

Halten wir also fest:

[mm]\int_P f(t) ~ \mathrm{d}(s,t) \ = \ \int \limits_0^1 \int \limits_0^t f(t) ~ \mathrm{d}s ~ \mathrm{d}t \ + \ \int \limits_1^2 \int \limits_{t-1}^1 f(t) ~ \mathrm{d}s ~ \mathrm{d}t[/mm]

Das [mm]f(t)[/mm] hängt nicht von [mm]s[/mm] ab, kann also bei der inneren Integration jeweils vor das Integral gezogen werden. Dann mußt du dir nur noch überlegen, daß der Term [mm]1 - \left| t-1 \right|[/mm] in beiden Fällen genau das ist, was die inneren Integrationen liefern.

Bezug
                                                                                                
Bezug
Integration und Transformation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:51 Mo 20.06.2016
Autor: mathe_thommy

Ich führe nun folgende Rechnung durch:
[mm] \integral_{0}^{1}{\integral_{0}^{t}{f(t) ds} dt}+\integral_{1}^{2}{\integral_{t-1}^{1}{f(t) ds} dt} [/mm]
= [mm] \integral_{0}^{1}{f(t) \integral_{0}^{t}{1 ds} dt}+\integral_{1}^{2}{f(t) \integral_{t-1}^{1}{1 ds} dt} [/mm]
= [mm] \integral_{0}^{1}{f(t)*t dt}+\integral_{1}^{2}{f(t)*(1-(t-1)) dt} [/mm]

Kann ich nun nicht die beiden Integrale vereinen, da die obere Grenze des ersten Summanden der unteren Grenze des zweiten Summenden entspricht, um folgendes zu erhalten?

= [mm] \integral_{0}^{2}{f(t)*t + f(t)*(1-(t-1))dt} [/mm]
= [mm] \integral_{0}^{2}{f(t)*(t +(1-(t-1)))dt} [/mm]

Das sieht dem Endergebnis doch schon sehr ähnlich - mir ist nur nicht ganz klar, wie ich jetzt weiter vorgehen muss. Möglicherweise könntet ihr mir dabei noch einmal auf die Sprünge helfen?

Beste Grüße
mathe_thommy

Bezug
                                                                                                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mo 20.06.2016
Autor: Leopold_Gast

Nein, du kannst die Integrale nicht "vereinen". Jedenfalls nicht so, wie du es machst. Die Intervalladditivität

[mm]\int_a^c g(t) ~ \mathrm{d}t + \int_c^b g(t) ~ \mathrm{d}t \ = \ \int_a^b g(t) ~ \mathrm{d}t[/mm]

setzt voraus, daß unterm Integral derselbe Integrand steht. Bei dir steht aber einmal [mm]t \cdot f(t)[/mm] und das andere Mal [mm]\left( 1 - (t-1) \right) \cdot f(t)[/mm]. Also nix mit Intervalladditivität.

Und die Regel

[mm]\int_a^b g(t) ~ \mathrm{d}t + \int_a^b h(t) ~ \mathrm{d}t \ = \ \int_a^b \left( g(t) + h(t) \right) ~ \mathrm{d}t[/mm]

setzt voraus, daß die Integrationsgrenzen fest sind. Also auch nix mit dieser Regel.

Du bist sehr erfinderisch im Erzeugen eigener "Regeln". Diese sind nur leider logisch völlig unhaltbar.

Jetzt mal positiv denken. Der erste Teil deiner Umformung, also vor dem "Vereinen" der Integrale, ist ja korrekt. Beginne nun eine neue Rechnung und schreibe [mm]1 - \left| t-1 \right|[/mm] ohne Betragsstriche (Fallunterscheidung). Vielleicht fällt dir etwas auf. Vielleicht sogar, daß du eigentlich schon am Ziel bist.

Bezug
                                                                                                                
Bezug
Integration und Transformation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:48 Mo 20.06.2016
Autor: mathe_thommy

Dann werde ich jetzt noch einmal versuchen so fortzufahren, wie Du es vorschlägst und lasse den Betrag weg:

$ [mm] \integral_{0}^{1}{f(t)\cdot{}t dt}+\integral_{1}^{2}{f(t)\cdot{}(1-(|t-1|)) dt} [/mm]
= $ [mm] \integral_{0}^{1}{f(t)\cdot{}t dt}+\integral_{1}^{2}{f(t)\cdot{}(1-(t-1)) dt} [/mm] $
= $ [mm] \integral_{0}^{1}{f(t)\cdot{}t dt}+\integral_{1}^{2}{f(t)\cdot{} -t+2 dt} [/mm] $

Fallunterscheidung:
(i) t=2, dann ist zweiter Summand gleich Null
(ii) t>2, dann ist zweiter Summand $ [mm] \integral_{1}^{2}{f(t)\cdot{}+x dt} [/mm] $, wobei x negative reelle Zahl
(iii) t<2, dann ist zweiter Summand $ [mm] \integral_{1}^{2}{f(t)\cdot{}+x dt} [/mm] $, wobei x positive reelle Zahl

Das führt mich hinsichtlich der Umformung momentan nicht weiter - vermutlich habe ich etwas übersehen?

Bezug
                                                                                                                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mo 20.06.2016
Autor: Leopold_Gast

Ehrlich gesagt weiß ich nicht, wie ich dir noch helfen soll, ohne alles zu verraten. Was du tust, ist für mich jedenfalls unverständlich. Warum stellst du es nicht so an, was ich es dir vorgeschlagen habe: "Beginne nun eine neue (!!!) Rechnung und schreibe [mm]1 - \left| t-1 \right|[/mm] ohne Betragsstriche (Fallunterscheidung)."

Dann tue ich es für dich.

[mm]1 - \left| t - 1 \right| \ = \ \begin{cases} 1 - \left( -(t-1) \right), & t \leq 1 \\ 1 - (t-1), & t > 1 \end{cases} \ = \ \begin{cases} 1 + (t-1), & t \leq 1 \\ 1 - (t-1), & t > 1 \end{cases} \ = \ \begin{cases} t, & t \leq 1 \\ 2 - t, & t > 1 \end{cases}[/mm]

Bezug
                                                                                                                                
Bezug
Integration und Transformation: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:34 Mo 20.06.2016
Autor: mathe_thommy

Da habe ich dich falsch verstanden - ich dachte, gemeint sei eine neue Rechnung hinsichtlich der Integrale.
Mit der Fallunterscheidung lassen sich für den Fall [mm] $t\le1$ [/mm] (wodurch nach Deiner Rechnung lediglich $t$ übrig bleibt)die beiden Integrale wie ursprünglich versucht vereinigen.
Für den zweiten Fall $t>1$ lasse ich dann vermutlich einfach beide Summanden getrennt voneinander stehen?

Bezug
                                                                                                                                        
Bezug
Integration und Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 06:28 Di 21.06.2016
Autor: Leopold_Gast

[mm]\int_P f(t) ~ \mathrm{d}(s,t) \ = \ \int \limits_0^1 \int \limits_0^t f(t) ~ \mathrm{d}s ~ \mathrm{d}t \ + \ \int \limits_1^2 \int \limits_{t-1}^1 f(t) ~ \mathrm{d}s ~ \mathrm{d}t \ = \ \int \limits_0^1 t \cdot f(t) ~ \mathrm{d}t \ + \ \int_1^2 (2-t) \cdot f(t) ~ \mathrm{d}t[/mm]

[mm]= \ \int \limits_0^1 \left( 1 - \left| t-1 \right| \right) \cdot f(t) ~ \mathrm{d}t \ + \ \int \limits_1^2 \left( 1 - \left| t-1 \right| \right) \cdot f(t) ~ \mathrm{d}t \ = \ \int \limits_0^2 \left( 1 - \left| t-1 \right| \right) \cdot f(t) ~ \mathrm{d}t[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de